题目内容
已知数列{an}的通项公式为an=
,求Sn.
| 2 |
| (n+1)2-1 |
考点:数列的求和
专题:等差数列与等比数列
分析:an=
=
=
-
,利用裂项相消法求和.
| 2 |
| (n+1)2-1 |
| 2 |
| n(n+2) |
| 1 |
| n |
| 1 |
| n+2 |
解答:
解:an=
=
=
-
,
∴sn=1-
+
-
+
-
+…+
-
+
-
+
-
=1+
-
-
=
.
| 2 |
| (n+1)2-1 |
| 2 |
| n(n+2) |
| 1 |
| n |
| 1 |
| n+2 |
∴sn=1-
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n-2 |
| 1 |
| n |
| 1 |
| n-1 |
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| n+2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| n(3n+5) |
| 2(n+1)(n+2) |
点评:本题考查裂项法求数列的和,属于基础题,注意消去后剩余的项是哪些.
练习册系列答案
相关题目
x∈R,(1-|x|)(1+x)是正数的充分必要条件是( )
| A、|x|<1 |
| B、x<1 |
| C、x<-1 |
| D、x<1且x≠-1 |