ÌâÄ¿ÄÚÈÝ
20£®°ÂÔË»áÆ¹ÅÒÇò±ÈÈü¹²ÉèÄÐ×Óµ¥´ò¡¢Å®×Óµ¥´ò¡¢ÄÐ×ÓÍÅÌ塢Ů×ÓÍÅÌå¹²ËÄö½ðÅÆ£¬±£ÊعÀ¼ÆÖйúƹÅÒÇòÄжӵ¥´ò»òÍÅÌå»ñµÃһö½ðÅÆµÄ¸ÅÂʾùΪ$\frac{3}{4}$£¬ÖйúƹÅÒÇòÅ®¶Óµ¥´ò»òÍÅÌå»ñµÃһö½ðÅÆµÄ¸ÅÂʾùΪ$\frac{4}{5}$£®£¨1£©Ç󰴴˹À¼ÆÖйúƹÅÒÇòÅ®¶Ó±ÈÖйúƹÅÒÇòÄжӶà»ñµÃһö½ðÅÆµÄ¸ÅÂÊ£»
£¨2£©¼ÇÖйúƹÅÒÇò¶Ó»ñµÃµÄ½ðÅÆÊýΪ¦Î£¬°´´Ë¹À¼Æ¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍûE¦Î£®
·ÖÎö £¨1£©ÉèÖйúƹÅÒÇòÄжӻñ0ö½ðÅÆ£¬Å®¶Ó»ñ1ö½ðÅÆÎªÊ¼þA£¬ÖйúƹÅÒÇòÄжӻñ1ö½ðÅÆ£¬Å®¶Ó»ñ2ö½ðÅÆÎªÊ¼þB£¬°´´Ë¹À¼ÆÖйúƹÅÒÇòÅ®¶Ó±ÈÖйúƹÅÒÇòÄжӶà»ñµÃһö½ðÅÆµÄ¸ÅÂÊP£¨A+B£©=P£¨A£©+P£¨B£©£¬ÓÉ´ËÄÜÇó³ö½á¹û£®
£¨2£©¸ù¾ÝÌâÒâÖйúƹÅÒÇò¶Ó»ñµÃ½ðÅÆÊýÊÇÒ»Ëæ»ú±äÁ¿¦Î£¬ËüµÄËùÓпÉÄÜȡֵΪ0£¬1£¬2£¬3£¬4£¬·Ö±ðÇó³öÏàÓ¦µÄ¸ÅÂÊ£¬ÓÉ´ËÄÜÇó³ö¦ÎµÄ¸ÅÂÊ·Ö²¼ÁкÍËù»ñ½ðÅÆµÄÊýѧÆÚÍû£®
½â´ð ½â£º£¨1£©ÉèÖйúƹÅÒÇòÄжӻñ0ö½ðÅÆ£¬Å®¶Ó»ñ1ö½ðÅÆÎªÊ¼þA£¬
ÖйúƹÅÒÇòÄжӻñ1ö½ðÅÆ£¬Å®¶Ó»ñ2ö½ðÅÆÎªÊ¼þB£¬
ÔòP£¨A+B£©=P£¨A£©+P£¨B£©
=$C_2^1{£¨{1-\frac{3}{4}}£©^2}•£¨{\frac{4}{5}}£©•£¨{1-\frac{4}{5}}£©$$+C_2^1£¨{\frac{3}{4}}£©•£¨{1-\frac{3}{4}}£©{£¨{\frac{4}{5}}£©^2}=\frac{13}{50}$£®
£¨2£©¸ù¾ÝÌâÒâÖйúƹÅÒÇò¶Ó»ñµÃ½ðÅÆÊýÊÇÒ»Ëæ»ú±äÁ¿¦Î£¬
ËüµÄËùÓпÉÄÜȡֵΪ0£¬1£¬2£¬3£¬4£¨µ¥Î»£ºÃ¶£©£¬
ÄÇô$P£¨{¦Î=0}£©=C_2^1{£¨{1-\frac{3}{4}}£©^2}$${£¨{1-\frac{4}{5}}£©^2}=\frac{1}{400}$£¬
$P£¨{¦Î=1}£©=C_2^1£¨{1-\frac{3}{4}}£©•$$£¨{\frac{3}{4}}£©•{£¨{1-\frac{4}{5}}£©^2}+C_2^1£¨{\frac{4}{5}}£©•$${£¨{1-\frac{3}{4}}£©^2}£¨{1-\frac{4}{5}}£©=\frac{7}{200}$£¬
$P£¨{¦Î=2}£©=C_2^1C_2^1£¨{1-\frac{3}{4}}£©•$$£¨{\frac{3}{4}}£©•£¨{1-\frac{4}{5}}£©£¨{\frac{4}{5}}£©+$${£¨{\frac{4}{5}}£©^2}•{£¨{1-\frac{3}{4}}£©^2}{£¨{1-\frac{4}{5}}£©^2}$$£¨{\frac{3}{4}}£©=\frac{73}{400}$£¬
$P£¨{¦Î=3}£©=C_2^1£¨{1-\frac{3}{4}}£©•£¨{\frac{3}{4}}£©$$•{£¨{\frac{4}{5}}£©^2}+C_2^1{£¨{\frac{3}{4}}£©^2}•£¨{\frac{4}{5}}£©$$£¨{1-\frac{4}{5}}£©=\frac{21}{50}$£¬
$P£¨{¦Î=4}£©={£¨{\frac{3}{4}}£©^2}•$${£¨{\frac{4}{5}}£©^2}=\frac{9}{25}$£¬
Ôò¦ÎµÄ¸ÅÂÊ·Ö²¼ÁÐΪ£º
| ¦Î | 0 | 1 | 2 | 3 | 4 |
| P | $\frac{1}{400}$ | $\frac{7}{200}$ | $\frac{73}{400}$ | $\frac{21}{50}$ | $\frac{9}{25}$ |
¹ÊÖйúƹÅÒÇò¶Ó»ñµÃ½ðÅÆÊýµÄÆÚÍûΪ$\frac{31}{10}$ö£®
µãÆÀ ±¾Ì⿼²é¿¼²é¸ÅÂʵÄÇ󷨣¬¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼Áм°ÊýѧÆÚÍûµÄÇ󷨣¬¿¼²éÊý¾Ý´¦ÀíÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓ뷽˼Ï룬ÊÇÖеµÌ⣮
| A£® | £¨-1£¬0£© | B£® | £¨-2£¬-1£© | C£® | £¨-¡Þ£¬0£© | D£® | £¨1£¬+¡Þ£© |
| A£® | £¨-¡Þ£¬0] | B£® | £¨-¡Þ£¬0]¡È{$\frac{2}{e}$} | C£® | £¨-¡Þ£¬$\frac{2}{e}$£© | D£® | £¨-¡Þ£¬$\frac{2}{e}$£© |
| A£® | µÚÒ»ÏóÏÞ | B£® | µÚ¶þÏóÏÞ | C£® | µÚÈýÏóÏÞ | D£® | µÚËÄÏóÏÞ |
| A£® | $[{\frac{{2\sqrt{5}}}{5}£¬2}]¡È[{\frac{{6\sqrt{5}}}{5}£¬6}]$ | B£® | $[{\frac{{2\sqrt{5}}}{5}£¬6}]$ | C£® | $[{\frac{{2\sqrt{5}}}{5}£¬2}]¡È[{4£¬6}]$ | D£® | $\left\{2\right\}¡È[{\frac{{6\sqrt{5}}}{5}£¬6}]$ |