题目内容

将函数f(x)=sinx的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得图象向左平移
π
4
个单位,所得函数为g(x).
(1)求函数g(x)的最小正周期和单调递增区间;
(2)求函数g(x)在区间[
π
8
4
]
上的最小值和最大值,并求出取最值时x的值.
考点:函数y=Asin(ωx+φ)的图象变换
专题:三角函数的求值,三角函数的图像与性质
分析:(1)首先根据函数的图象变换求出g(x)的解析式,进一步求出函数的最小正周期和单调区间.
(2)根据(1)的结论,利用函数的定义域确定函数的值域
解答: 解:(1)函数f(x)=sinx的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得图象向左平移
π
4
个单位,
则:g(x)=sin(
1
2
x+
π
8
)

所以:T=
1
2
=4π

令:-
π
2
+2kπ≤
1
2
x+
π
8
π
2
+2kπ
(k∈Z)
解得:-
4
+4kπ≤x≤
4
+4kπ

函数的递增区间为:x∈[-
4
+4kπ,
4
+4kπ
](k∈Z)
(2)由于:
π
8
≤x≤
4

所以:
16
1
2
x+
π
8
π
2

根据函数的单调性:当x=
π
4
时,函数取最大值f(x)max=1
当x=
π
8
时,函数取最小值f(x)min=sin
16
点评:本题考查的知识要点:正弦型函数的图象变换问题,正弦型函数的周期和单调区间的应用,正弦型函数的最值,属于基础题型.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网