题目内容

假设乒乓球团体比赛的规则如下:进行5场比赛,除第三场为双打外,其余各场为单打,参赛的每个队选出3名运动员参加比赛,每个队员打两场,且第1、2场与第4、5场不能是某个运动员连续比赛.某队有4名乒乓球运动员,其中A不适合双打,则该队教练安排运动员参加比赛的方法共有
 
种.
考点:计数原理的应用
专题:排列组合
分析:将4名运动员分别记为A、B、C、D:分两种情况考虑,第一种是4选3时没有选到A,第二种是4选3时选到了A,结合比赛规则分别讨论两种情况下的参赛安排情况,最后综合讨论结果,可得答案.
解答: 解:将4名运动员分别记为A、B、C、D:分两种情况考虑,第一种是4选3时没有选到A,第二种是4选3时选到了A.
第一种情况:4选3时没有选到A,则B、C、D参加比赛
第一场单打比赛的安排方法有3种,
第二场单打比赛的安排方法有2种,
第三场双打比赛的安排方法有2种(因为打了一二场的两名选手不能组合打双打,否则第4、5两场就是一人连打了),
第四场单打比赛的安排方法有2种,
第五场单打比赛的安排方法有1种,
共有3×2×2×2×1=24种安排方法.
第二种情况:4选3时选到了A,则有ABC、ABD、ACD三种选法,对于每一种选法,都有:
第三场双打比赛的安排方法有1种,
A必在1、2场中选一场,有两种选法,再在4、5场中选一场,有两种选法,
当A选择了1、2场后,剩下一场有两种选法,4、5中剩下的一场只有一种选法了.
共有3×2×2×2×1=24种安排方法.
故总的安排方法有24+24=48种.
故答案为:48.
点评:本题主要考查排列与组合,若题目要求元素的顺序则是排列问题,排列问题要做到不重不漏,有些题目带有一定的约束条件,解题时要先考虑有限制条件的元素,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网