ÌâÄ¿ÄÚÈÝ
6£®ÊýÁÐ{an}Âú×㣺a1=1£¬a2=2£¬an+2=$\frac{{a}_{n}+{a}_{n+1}}{2}$£¨n¡ÊN*£©£®Éèbn=an+1-an£¬£¨1£©ÇóÊýÁÐ{bn}µÄͨÏʽ£»
£¨2£©Çó×îСÕýÕûÊýNµÄÖµ£¬Ê¹n£¾Nʱ£¬|an-$\frac{5}{3}$|£¼$\frac{2}{9n}$ºã³ÉÁ¢£»
£¨3£©ÊýÁÐ{cn}Âú×ã${c_n}=\frac{3}{2}|{{a_n}-\frac{5}{3}}|$£¬cnµÄǰnÏîºÍΪTn£¬ÊÇ·ñ´æÔÚÕýÕûÊým¡¢n£¬Ê¹µÃ$\frac{{T}_{n+1}-m}{{T}_{n}-m}$£¾cm+2³ÉÁ¢£¿Èô´æÔÚ£¬Çó³öËùÓзûºÏÌõ¼þµÄÓÐÐòʵÊý¶Ô£¨m£¬n£©£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö £¨1£©bn=an+1-an=$\frac{{a}_{n}+{a}_{n+1}}{2}$-an+1=$\frac{{a}_{n}+{a}_{n+1}}{2}$=-$\frac{1}{2}$bn£¬b1=1£¬ÀûÓõȱÈÊýÁеÄͨÏʽ¿ÉµÃbn£®£¬
£¨2£©ÓÉ£¨1£©Öª£¬an+1-an=£¨-$\frac{1}{2}$£©n-1£¬ÀûÓá°ÀÛ¼ÓÇóºÍ¡±·½·¨ÓëµÈ±ÈÊýÁеÄÇóºÍ¹«Ê½¿ÉµÃan£®ÔÙÀûÓÃÊýÁеĵ¥µ÷ÐÔ¼´¿ÉµÃ³ö£®
£¨3£©${c_n}=\frac{3}{2}|{{a_n}-\frac{5}{3}}|$=£¨$\frac{1}{2}$£©n-1£¬¿ÉµÃTn¨T2-$£¨\frac{1}{2}£©^{n-1}$£¬Òò´Ë$\frac{{T}_{n+1}-m}{{T}_{n}-m}$£¾cm+2£¬¼´$\frac{2-£¨\frac{1}{2}£©^{n}-m}{2-£¨\frac{1}{2}£©^{n-1}-m}$£¾$£¨\frac{1}{2}£©^{m+1}$£®¶Ôm£¬n·ÖÀàÌÖÂÛ¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨1£©bn=an+1-an=$\frac{{a}_{n}+{a}_{n+1}}{2}$-an+1=$\frac{{a}_{n}+{a}_{n+1}}{2}$=-$\frac{1}{2}$bn£¬b1=1
¡à{bn}µÃ¹«±ÈΪ-$\frac{1}{2}$£¬Ê×ÏîΪ1µÄµÈ±ÈÊýÁУ¬{bn}µÄͨÏʽÊÇbn=£¨-$\frac{1}{2}$£©n-1£¬
£¨2£©ÓÉ£¨1£©Öª£¬an+1-an=£¨-$\frac{1}{2}$£©n-1£¬
µ±n£¾1ʱ£¬an=a1+£¨a2-a1£©+£¨a3-a2£©+¡+£¨an-an-1£©
=1+1+£¨-$\frac{1}{2}$£©+£¨-$\frac{1}{2}$£©2+¡+£¨-$\frac{1}{2}$£©n-2
=$\frac{5}{3}$-$\frac{2}{3}$•£¨-$\frac{1}{2}$£©n-1£¬
ÓÖa1=1=$\frac{5}{3}$-$\frac{2}{3}$£¬
¡àÊýÁÐ{an}µÄͨÏʽÊÇan=$\frac{5}{3}$-$\frac{2}{3}$•£¨-$\frac{1}{2}$£©n-1£¬
¡à|an-$\frac{5}{3}$|=$\frac{1}{3}$•£¨$\frac{1}{2}$£©n-2£¬
¡à|an-$\frac{5}{3}$|£¼$\frac{2}{9n}$µÈ¼ÛÓÚ3n•£¨$\frac{1}{2}$£©n-1£¼1
¼ÇDn=3n•£¨$\frac{1}{2}$£©n-1£¬
¡ß$\frac{{D}_{n+1}}{{D}_{n}}$=$\frac{n+1}{2n}$£¬
¡àD1=D2ÇÒn£¾1ʱ£¬Dn£¾Dn+1£¬
¼ÆËã¿ÉµÃD4£¾1£¬D5£¼1£¬
ËùÒÔ×îСÕýÕûÊýNµÄÖµÊÇ4£¬
£¨3£©${c_n}=\frac{3}{2}|{{a_n}-\frac{5}{3}}|$=£¨$\frac{1}{2}$£©n-1£¬
¡àTn¨T$\frac{1-\frac{1}{{2}^{n}}}{1-\frac{1}{2}}$=2-$£¨\frac{1}{2}£©^{n-1}$£¬
¡ß$\frac{{T}_{n+1}-m}{{T}_{n}-m}$£¾cm+2£¬
¡à$\frac{2-£¨\frac{1}{2}£©^{n}-m}{2-£¨\frac{1}{2}£©^{n-1}-m}$£¾$£¨\frac{1}{2}£©^{m+1}$£®
¢Ùm=1ʱ£¬¿ÉµÃ£º$\frac{1-£¨\frac{1}{2}£©^{n}}{1-£¨\frac{1}{2}£©^{n-1}}$£¾$\frac{1}{4}$£¬¼´$3£¾£¨\frac{1}{2}£©^{n-1}$£¬n¡Ù1£¬Òò´Ën¡Ý2ʱºã³ÉÁ¢£®
¢Úm=2ʱ£¬²»µÈʽ»¯Îª£º$\frac{1}{2}£¾$$\frac{1}{8}$£¬n¡ÊN*ʱºã³ÉÁ¢£®£®
¢Ûm¡Ý3ʱ£¬»¯Îª£º$\frac{m-2+£¨\frac{1}{2}£©^{n}}{m-2+£¨\frac{1}{2}£©^{n-1}}$£¾$£¨\frac{1}{2}£©^{m+1}$£®¶ÔÓÚ?n¡ÊN*ºã³ÉÁ¢£®
µãÆÀ ±¾Ì⿼²éÁ˵ȱÈÊýÁеÄͨÏʽÓëÇóºÍ¹«Ê½¡¢ÊýÁеÝÍÆ¹ØÏµ¡¢ÊýÁеĵ¥µ÷ÐÔ¡¢²»µÈʽµÄ½â·¨ÓëÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
| A£® | Èôm?¦Á£¬n?¦Á£¬ÇÒm¡¢nÊÇÒìÃæÖ±Ïߣ¬ÄÇônÓë¦ÁÏཻ | |
| B£® | Èô¦Á¡É¦Â=m£¬n¡Îm£¬ÇÒn?¦Á£¬n?¦Â£¬Ôòn¡Î¦ÁÇÒn¡Î¦Â | |
| C£® | Èôm?¦Á£¬n?¦Á£¬ÇÒm¡Î¦Â£¬n¡Î¦Â£¬Ôò¦Á¡Î¦Â | |
| D£® | Èôm¡Î¦Á£¬n¡Î¦Â£¬ÇÒ¦Á¡Î¦Â£¬Ôòm¡În |
| A£® | -2 | B£® | -$\frac{1}{2}$ | C£® | $\frac{1}{2}$ | D£® | 2 |