题目内容

已知
e1
e2
是夹角为
3
的两个单位向量,
a
=
e1
-2
e2
b
=k
e1
+
e2
,若
a
b
则实数k的值为
 
考点:数量积判断两个平面向量的垂直关系
专题:平面向量及应用
分析:由已知得
a
b
=(
e1
-2
e2
)(k
e1
+
e2
)=k-2+
1
2
(2k-1)
=0,由此能求出k=
3
4
解答: 解:∵
e1
e2
是夹角为
3
的两个单位向量,
a
=
e1
-2
e2
b
=k
e1
+
e2
a
b

a
b
=(
e1
-2
e2
)(k
e1
+
e2

=k
e1
2
-(2k-1)
e1
e2
-2
e2
2

=k-2-(2k-1)cos
2
3
π

=k-2+
1
2
(2k-1)
=0,
解得k=
3
4

故答案为:
3
4
点评:本题考查实数值的求法,是基础题,解题时要认真审题,注意向量垂直的性质的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网