题目内容

在约束条件
2x+y≤4
x+y≤m
x≥0,y≥0.
下,当3≤m≤5时,目标函数z=3x+2y的最大值的取值范围是
 
(请用区间表示).
考点:简单线性规划
专题:不等式的解法及应用
分析:先根据约束条件画出可行域,再利用几何意义求最值,只需求出直线z=3x+2y过区域内边界上的某些点时,z最大值即可.
解答: 解:由
x+y=m
2x+y=4
x=4-m
y=2m-4
交点为A(2,0),B(4-m,2m-4),C(0,m),C'(0,4),

当3≤m<4时可行域是四边形OABC,此时,7≤z≤8
当4≤m≤5时可行域是△OAC'此时,zmax=8
故答案为:[7,8].
点评:本题主要考查了简单的线性规划.由于线性规划的介入,借助于平面区域,可以研究函数的最值或最优解;借助于平面区域特性,我们还可以优化数学解题,借助于规划思想,巧妙应用平面区域,为我们的数学解题增添了活力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网