题目内容
7.已知$\frac{tan(α-γ)}{tanα}$+$\frac{si{n}^{2}β}{si{n}^{2}α}$=1,求证:tan2β=tanαtanγ.分析 利用同角三角函数的基本关系,两角差的三角公式,化简等式的左边,可得结论.
解答 证明:∵已知$\frac{tan(α-γ)}{tanα}$+$\frac{si{n}^{2}β}{si{n}^{2}α}$=1,∴$\frac{sin(α-γ)cosα}{sinαcos(α-γ)}$+$\frac{{sin}^{2}β}{{sin}^{2}α}$=1,
∴sin2β=sin2α•[1-$\frac{sin(α-γ)cosα}{cos(α-γ)sinα}$]=sin2α•$\frac{cos(α-γ)sinα-sin(α-γ)cosα}{cos(α-γ)sinα}$=$\frac{{sin}^{2}αcos(α-γ)-sinαcosαsin(α-γ)}{cos(α-γ)}$
=sinα•$\frac{sin[α-(α-γ)]}{cos(α-γ)}$=$\frac{sinαsinγ}{cos(α-γ)}$=$\frac{sinαsinγ}{cosαcosγ+sinαsinγ}$.
∵tan2β=$\frac{{sin}^{2}β}{1{-sin}^{2}β}$=$\frac{\frac{sinαsinγ}{cosαcosγ+sinαsinγ}}{1-\frac{sinαsinγ}{cosαcosγ+sinαsinγ}}$=$\frac{sinαsinγ}{cosαcosγ}$=tanα•tanγ,
∴tan2β=tanαtanγ成立.
点评 本题主要考查同角三角函数的基本关系,两角差的三角公式的应用,属于中档题.
练习册系列答案
相关题目
15.下列叙述正确的是( )
| A. | 数列1,3,5,7与7,5,3,1是同一数列 | |
| B. | 数列0,1,2,3,…的通项公式是an=n | |
| C. | -1,1,-1,1,…是常数列 | |
| D. | 1,2,22,23,…是递增数列,也是无穷数列 |
19.已知f(x)是定义在R上的偶函数,且当x<0时,$f(x)=2_{\;}^x$,则f(log49)的值为( )
| A. | -3 | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | 3 |
17.已知函数 f(x)=kx($\frac{1}{e}$≤x≤e2),与函数$g(x)={(\frac{1}{e})^{\frac{x}{2}}}$,若f(x)与g(x)的图象上分别存在点M,N,使得MN关于直线y=x对称,则实数k的取值范围是( )
| A. | [-$\frac{1}{e}$,e] | B. | [-$\frac{2}{e}$,2e] | C. | (-$\frac{2}{e}$,2e) | D. | [-$\frac{3}{e}$,3e] |