题目内容
由曲线xy=1,直线y=x,y=3所围成的平面图形的面积为( )
A、
| ||
| B、2-ln 3 | ||
| C、4+ln 3 | ||
| D、4-ln 3 |
考点:定积分在求面积中的应用
专题:计算题,导数的概念及应用
分析:确定曲线交点的坐标,确定被积区间及被积函数,利用定积分表示面积,即可得到结论.
解答:
解:由xy=1,y=3可得交点坐标为(
,3),
由xy=1,y=x可得交点坐标为(1,1),
由y=x,y=3可得交点坐标为(3,3),
∴由曲线xy=1,直线y=x,y=3所围成的平面图形的面积为
(3-
)dx+
(3-x)dx=(3x-lnx)
+(3x-
x2)
=(3-1-ln3)+(9-
-3+
)=4-ln3
故选:D.
| 1 |
| 3 |
由xy=1,y=x可得交点坐标为(1,1),
由y=x,y=3可得交点坐标为(3,3),
∴由曲线xy=1,直线y=x,y=3所围成的平面图形的面积为
| ∫ | 1
|
| 1 |
| x |
| ∫ | 3 1 |
| | | 1
|
| 1 |
| 2 |
| | | 3 1 |
| 9 |
| 2 |
| 1 |
| 2 |
故选:D.
点评:本题考查面积的计算,解题的关键是确定曲线交点的坐标,确定被积区间及被积函数,利用定积分表示面积.
练习册系列答案
相关题目
在△ABC中,已知2B=A+C,则B=( )
| A、30° | B、45° |
| C、60° | D、90° |
已知函数f(x)=lg(|x|+1),定义函数F(x)=
,若mn<0,m+n>0,则有F(m)+F(n)( )
|
| A、一定为负数 | B、等于0 |
| C、一定为正数 | D、正负不能确定 |
下列命题中正确的是( )
| A、命题“?x∈R,使得x2-1<0”的否定是“?x∈R,均有x2-1>0” |
| B、命题“若cosx=cosy,则x=y”的逆否命题是真命题: |
| C、命题”若x=3,则x2-2x-3=0”的否命题是“若x≠3,则x2-2x-3≠0” |
| D、命题“存在四边相等的四边形不是正方形”是假命题 |
函数f(x)=
,若f(-a)+f(a)≤2f(1),则实数a取值范围是( )
|
| A、(-∞,-1]∪[1,+∞) |
| B、[-1,0] |
| C、[0,1] |
| D、[-1,1] |
已知函数f(x)=
,则f(2014)=( )
|
| A、2012 | B、2013 |
| C、2014 | D、2015 |