ÌâÄ¿ÄÚÈÝ
7£®Ä³ÖÖ²úÆ·µÄÒÔÍù¸÷ÄêµÄÐû´«·ÑÓÃÖ§³öx£¨ÍòÔª£©ÓëÏúÊÛÁ¿t£¨Íò¼þ£©Ö®¼äÓÐÈç϶ÔÓ¦Êý¾Ý| x | 2 | 4 | 5 | 6 | 8 |
| t | 4 | 3 | 6 | 7 | 8 |
£¨2£©Éè¸Ã²úÆ·µÄµ¥¼þÊÛ¼ÛÓëµ¥¼þÉú²ú³É±¾µÄ²îΪy£¨Ôª£©£¬ÈôyÓëÏúÊÛÁ¿t£¨Íò¼þ£©µÄº¯Êý¹ØÏµÊÇ$y=-\frac{1}{32000}{t}^{2}-\frac{1}{t}+\frac{103}{80}$£¨0£¼t£¼30£©£¬ÊÔ¹À¼ÆÐû´«·ÑÓÃÖ§³öxΪ¶àÉÙÍòԪʱ£¬ÏúÊ۸òúÆ·µÄÀûÈó×î´ó£¿£¨×¢£ºÏúÊÛÀûÈó=ÏúÊÛ¶î-Éú²ú³É±¾-Ðû´«·ÑÓã©
£¨²Î¿¼Êý¾ÝÓ빫ʽ£º$\sum_{i=1}^{5}{{x}_{i}}^{2}=145$£¬$\sum_{i=1}^{5}{x}_{i}{t}_{i}$=156£¬b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n\overline{{x}^{2}}}$£©
·ÖÎö £¨1£©ÀûÓù«Ê½Çó³ö$\hat{b}$£¬$\hat{a}$£¬¼´¿ÉµÃ³ö½áÂÛ£®
£¨2£©ÉèÏúÊÛÀûÈóΪu£¬ÔòyÓëÏúÊÛÁ¿t£¨Íò¼þ£©µÄº¯Êý¹ØÏµÊÇ$y=-\frac{1}{32000}{t}^{2}-\frac{1}{t}+\frac{103}{80}$£¨0£¼t£¼30£©£¬
¸ù¾ÝÏúÊÛÀûÈó=ÏúÊÛ¶î-Éú²ú³É±¾-Ðû´«·ÑÓ㬽¨Á¢¹ØÏµ£¬¼´¿ÉÇó½â£®
½â´ð ½â£º£¨1£©Ñù±¾Æ½¾ùÊý$\overline{x}$=$\frac{1}{5}£¨2+4+5+6+8£©$=5£¬$\overline{t}$=4+3+$\frac{1}{5}£¨4+3+6+7+8£©$=5.6£¬
$\sum_{i=1}^{5}{{x}_{i}}^{2}=145$£¬$\sum_{i=1}^{5}{x}_{i}{t}_{i}$=156£¬b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n\overline{{x}^{2}}}$£©
¡à$\hat{b}$=$\frac{156-5¡Á5¡Á5.6}{145-5¡Á{5}^{2}}$=0.8£¬
¡à$\hat{a}$=5.6-0.8•5=1.6
¹ÊµÃ»Ø¹éÖ±Ïß·½³ÌΪ£ºt=0.8x+1.6£»
£¨2£©¸Ã²úÆ·µÄµ¥¼þÊÛ¼ÛÓëµ¥¼þÉú²ú³É±¾µÄ²îΪy£¨Ôª£©£¬ÈôyÓëÏúÊÛÁ¿t£¨Íò¼þ£©µÄº¯Êý¹ØÏµÊÇ$y=-\frac{1}{32000}{t}^{2}-\frac{1}{t}+\frac{103}{80}$£¨0£¼t£¼30£©£®
ÉèÏúÊÛÀûÈóΪu£¬t=0.8x+1.6£»¼´x=$\frac{t-1.6}{0.8}$
Ôòu=yt-x=$£¨-\frac{1}{32000}{t}^{2}-\frac{1}{t}+\frac{103}{80}£©t$-x=$-\frac{1}{32000}{t}^{3}+\frac{3}{80}t+1$
ÄÇô£º$u'=-\frac{1}{32000}{t}^{2}+\frac{3}{80}=-\frac{3}{80}£¨\frac{{t}^{2}}{400}-1£©$
Áîu¡ä=0£¬¿ÉµÃt=20£®ÇÒµ±t¡Ê£¨0£¬20£©Ê±£¬u¡ä£¾0£¬µ±t¡Ê£¨20£¬30£©Ê±£¬u¡ä£¼0£¬
¡àµ±t=20ʱ£¬uÈ¡µÃ×î´óÖµ£¬
´Ëʱ20=0.8x+1.6£¬¼´x=23£®
Ô¤²âµÃÐû´«·ÑÓÃÖ§³öxΪ23ÍòԪʱ£¬ÏúÊ۸òúÆ·µÄÀûÈó×î´ó£®
µãÆÀ ±¾Ì⿼²éÁËÏßÐԻع鷽³ÌµÄÇ󷨼°Ó¦Óã¬ÊôÓÚ»ù´¡Ì⣮
| A£® | 20¸ö | B£® | 32¸ö | C£® | 36¸ö | D£® | 40¸ö |
| $\overline{x}$ | $\overline{y}$ | $\sum_{i=1}^{6}£¨{x}_{i}-\overline{x}£©^{2}$ | $\sum_{i=1}^{6}£¨{x}_{i}-\overline{x}£©£¨{y}_{i}-\overline{y}£©$ |
| 6 | 500 | 20 | 1300 |
£¨¢ò£©ÀûÓã©£¨¢ñ£©ÖеĻع鷽³ÌÔ¤²â¸Ã¹«Ë¾Èç¹û¶Ô¸Ã²úÆ·µÄÐû´«·ÑÖ§³öΪ10ÍòԪʱÏúÊÛ¶îʱnÍòÔª£¬¸Ã¹«Ë¾¼Æ»®´Ó10ÃûÖвã¹ÜÀíÈËÔ±ÖÐÌôÑ¡³ö3È˵£ÈÎ×ܲÃÖúÀí£¬10ÃûÖвã¹ÜÀíÈËÔ±ÖÐÓÐ2ÃûÊǼ¼Êõ²¿¹Ç¸É£¬¼ÇËùÌôÑ¡3ÈËÖм¼Êõ²¿¹Ç¸ÉÈËÊýΪ¦Î£¬ÇÒËæ»ú±äÁ¿¦Ç=$\frac{n}{40}$+¦Î£¬Çó¦ÇµÄ¸ÅÂÊ·Ö²¼ÁÐÓëÊýѧÆÚÍû£®
¸½£º»Ø¹éÖ±ÏßµÄÇãбÂʽؾàµÄ×îС¶þ³Ë¹À¼Æ¹«Ê½·Ö±ðΪ£º
$\widehat{b}=\frac{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i-1}^{n}£¨{x}_{i}-\overline{x}£©^{2}}$£¬$\widehat{a}=\overline{y}-\widehat{b}\overline{x}$£®
| A£® | £¨0£¬6£© | B£® | £¨1£¬6£© | C£® | £¨0£¬$\sqrt{5}$£© | D£® | £¨0£¬2£© |