题目内容
17.已知m∈R,复数(m2+m)+(m2-m)i是纯虚数,则m=-1.分析 直接由实部为0且虚部不为0求解得答案.
解答 解:∵(m2+m)+(m2-m)i是纯虚数,
∴$\left\{\begin{array}{l}{{m}^{2}+m=0}\\{{m}^{2}-m≠0}\end{array}\right.$,解得m=-1.
故答案为:-1.
点评 本题考查复数的基本概念,考查一元二次方程的解法,是基础题.
练习册系列答案
相关题目
7.某种产品的以往各年的宣传费用支出x(万元)与销售量t(万件)之间有如下对应数据
(1)试求回归直线方程;
(2)设该产品的单件售价与单件生产成本的差为y(元),若y与销售量t(万件)的函数关系是$y=-\frac{1}{32000}{t}^{2}-\frac{1}{t}+\frac{103}{80}$(0<t<30),试估计宣传费用支出x为多少万元时,销售该产品的利润最大?(注:销售利润=销售额-生产成本-宣传费用)
(参考数据与公式:$\sum_{i=1}^{5}{{x}_{i}}^{2}=145$,$\sum_{i=1}^{5}{x}_{i}{t}_{i}$=156,b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n\overline{{x}^{2}}}$)
| x | 2 | 4 | 5 | 6 | 8 |
| t | 4 | 3 | 6 | 7 | 8 |
(2)设该产品的单件售价与单件生产成本的差为y(元),若y与销售量t(万件)的函数关系是$y=-\frac{1}{32000}{t}^{2}-\frac{1}{t}+\frac{103}{80}$(0<t<30),试估计宣传费用支出x为多少万元时,销售该产品的利润最大?(注:销售利润=销售额-生产成本-宣传费用)
(参考数据与公式:$\sum_{i=1}^{5}{{x}_{i}}^{2}=145$,$\sum_{i=1}^{5}{x}_{i}{t}_{i}$=156,b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n\overline{{x}^{2}}}$)
8.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则该竹子最上面一节的容积的升数为( )
| A. | $\frac{13}{22}$ | B. | $\frac{37}{33}$ | C. | $\frac{47}{44}$ | D. | $\frac{67}{66}$ |
12.已知随机变量X~N(0,σ2),若P(X>2)=0.03,则P(-2≤X≤2)=( )
| A. | 0.47 | B. | 0.485 | C. | 0.94 | D. | 0.97 |
9.双曲线$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1(a>0,b>0)$的离心率为$\sqrt{5}$,则其渐近线方程为( )
| A. | $y=±\frac{1}{2}x$ | B. | y=±2x | C. | $y=±\frac{{\sqrt{6}}}{6}x$ | D. | $y=±\sqrt{6}x$ |
6.已知(3-2x)2017=a0+a1(x-1)+a2(x-1)2+…+a2017(x-1)2017,则a1+2a2+3a3+…+2017a2017=( )
| A. | 1 | B. | -1 | C. | 4034 | D. | -4034 |