题目内容
数列{an}满足:a1=
,an+1=
+an,n∈N*,bn=
,Sn=b1+b2+…+bn,Pn=b1b2…bn,则Sn+2Pn= .
| 1 |
| 2 |
| a | 2 n |
| 1 |
| 1+an |
考点:数列的求和
专题:等差数列与等比数列
分析:由已知条件得bn=
=
-
,从而得到Sn=b1+b2+…+bn=
-
+
-
+…+
-
=
-
,再由bn=
=
,得Pn=b1b2…bn=
×
×…×
=
,由此能求出Sn+2Pn.
| 1 |
| 1+an |
| 1 |
| an |
| 1 |
| an+1 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| 1 |
| an+1 |
| 1 |
| a1 |
| 1 |
| an+1 |
| 1 |
| 1+an |
| an |
| an+1 |
| a1 |
| a2 |
| a2 |
| a3 |
| an |
| an+1 |
| a1 |
| an+1 |
解答:
解:∵数列{an}满足:a1=
,an+1=
+an,n∈N*,
∴
=
•
=
-
,
∴
=
-
,
∴bn=
=
-
,
∴Sn=b1+b2+…+bn=
-
+
-
+…+
-
=
-
,
bn=
=
,
Pn=b1b2…bn=
×
×…×
=
,
∴2Pn=
=
,
∴Sn+2Pn=
-
+
=
=2.
| 1 |
| 2 |
| a | 2 n |
∴
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an+1 |
∴
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an+1 |
∴bn=
| 1 |
| 1+an |
| 1 |
| an |
| 1 |
| an+1 |
∴Sn=b1+b2+…+bn=
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| 1 |
| an+1 |
| 1 |
| a1 |
| 1 |
| an+1 |
bn=
| 1 |
| 1+an |
| an |
| an+1 |
Pn=b1b2…bn=
| a1 |
| a2 |
| a2 |
| a3 |
| an |
| an+1 |
| a1 |
| an+1 |
∴2Pn=
| 2a1 |
| an+1 |
| 1 |
| an+1 |
∴Sn+2Pn=
| 1 |
| a1 |
| 1 |
| an+1 |
| 1 |
| an+1 |
| 1 |
| a1 |
点评:本题考查数列的前n项和的求法,是中档题,解题时要认真审题,注意等价转化思想的合理运用.
练习册系列答案
相关题目
设m,n,l是空间中三条不重合的直线,则下列命题中正确的是( )
| A、若m∥n,n⊥l,则m⊥l |
| B、若m⊥n,n⊥l,则m∥l |
| C、若m,n共面,n与l共面,则m与l共面 |
| D、若m,n异面,n与l异面,则m与l异面 |
| AD |
| DB |
A、
| ||
B、
| ||
C、
| ||
D、
|