题目内容

数列{an}满足:a1=
1
2
an+1=
a
2
n
+an
,n∈N*bn=
1
1+an
,Sn=b1+b2+…+bn,Pn=b1b2…bn,则Sn+2Pn=
 
考点:数列的求和
专题:等差数列与等比数列
分析:由已知条件得bn=
1
1+an
=
1
an
-
1
an+1
,从而得到Sn=b1+b2+…+bn=
1
a1
-
1
a2
+
1
a2 
-
1
a3
+…+
1
an
-
1
an+1
=
1
a1
-
1
an+1
,再由bn=
1
1+an
=
an
an+1
,得Pn=b1b2…bn=
a1
a2
×
a2
a3
×…×
an
an+1
=
a1
an+1
,由此能求出Sn+2Pn
解答: 解:∵数列{an}满足:a1=
1
2
an+1=
a
2
n
+an
,n∈N*
1
an+1
=
1
an
1
an+1
=
1
an
-
1
an+1

1
an+1
=
1
an
-
1
an+1

bn=
1
1+an
=
1
an
-
1
an+1

∴Sn=b1+b2+…+bn=
1
a1
-
1
a2
+
1
a2 
-
1
a3
+…+
1
an
-
1
an+1
=
1
a1
-
1
an+1

bn=
1
1+an
=
an
an+1

Pn=b1b2…bn=
a1
a2
×
a2
a3
×…×
an
an+1
=
a1
an+1

∴2Pn=
2a1
an+1
=
1
an+1

∴Sn+2Pn=
1
a1
-
1
an+1
+
1
an+1
=
1
a1
=2.
点评:本题考查数列的前n项和的求法,是中档题,解题时要认真审题,注意等价转化思想的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网