题目内容
已知数列{an}的前n项和为Sn,函数f(x)=
,an=log2
,则S2013= .
| 2x-1 |
| x+1 |
| f(n+1) |
| f(n) |
考点:数列的求和
专题:点列、递归数列与数学归纳法
分析:利用递推数列的通项公式可得an=log2
=log2f(n+1)-log2f(n),累加求和.逆用对数的运算性质即可求得答案.
| f(n+1) |
| f(n) |
解答:
解:∵n≥1,n∈N,∴f(n)=
=2-
≥
>0,
∴an=log2
=log2f(n+1)-log2f(n),
∴S2013=a1+a2+…+a2013
=[log2f(2)-log2f(1)]+[log2f(3)-log2f(2)]+…+[log2f(2014)-log2f(2013)]
=[log2f(2014)-log2f(1)]
=log2(
)-log2(
)
=log2(
)+1.
故答案为:log2(
)+1.
| 2n-1 |
| n+1 |
| 3 |
| n+1 |
| 1 |
| 2 |
∴an=log2
| f(n+1) |
| f(n) |
∴S2013=a1+a2+…+a2013
=[log2f(2)-log2f(1)]+[log2f(3)-log2f(2)]+…+[log2f(2014)-log2f(2013)]
=[log2f(2014)-log2f(1)]
=log2(
| 2×2014-1 |
| 2014+1 |
| 2×1-1 |
| 1+1 |
=log2(
| 4027 |
| 2015 |
故答案为:log2(
| 4027 |
| 2015 |
点评:本题考查数列的求和,着重考查递推关系的应用,求得an=log2
=log2f(n+1)-log2f(n)是关键,考查转化思想与运算能力,属于中档题.
| f(n+1) |
| f(n) |
练习册系列答案
相关题目
函数f(x)=
+mx在[1,2]上是增函数,则m的取值范围为( )
| 1 |
| x |
A、[
| ||
| B、[1,4] | ||
| C、[1,+∞) | ||
| D、(-∞,-1] |