题目内容

12.若函数f(x)在x=a处的导数为A,则$\lim_{△x→0}\frac{f(a+4△x)-f(a+5△x)}{△x}$=(  )
A.-AB.AC.2AD.-2A

分析 化简$\underset{lim}{△x→0}$$\frac{f(a+4△x)-f(a)}{△x}$+$\underset{lim}{△x→0}$$\frac{f(a)-f(a+5△x)}{△x}$,根据导数的定义,即可求得答案.

解答 解:$\lim_{△x→0}\frac{f(a+4△x)-f(a+5△x)}{△x}$=$\underset{lim}{△x→0}$$\frac{f(a+4△x)-f(a)+f(a)-f(a+5△x)}{△x}$,
=$\underset{lim}{△x→0}$$\frac{f(a+4△x)-f(a)}{△x}$+$\underset{lim}{△x→0}$$\frac{f(a)-f(a+5△x)}{△x}$,
=4$\underset{lim}{△x→0}$$\frac{f(a+4△x)-f(a)}{4△x}$-5$\underset{lim}{△x→0}$$\frac{f(a+5△x)-f(a)}{5△x}$,
=4f′(a)-5f′(a)
=-A,
$\lim_{△x→0}\frac{f(a+4△x)-f(a+5△x)}{△x}$=-A,
故选A.

点评 本题考查极限及运算,考查导数的定义,考查计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网