题目内容
7.已知7cos2α-sinαcosα-1=0,α∈($\frac{π}{4}$,$\frac{π}{2}$),求cos2α和$sin({2α+\frac{π}{4}})$的值.分析 求解7cos2α-sinαcosα-1=0可得tanα的值,展开二倍角余弦后化弦为切可得cos2α;再由同角三角函数的基本关系式求得sin2α,然后展开两角和的正弦得$sin({2α+\frac{π}{4}})$的值.
解答 解:由7cos2α-sinαcosα-1=0,得6cos2α-sinαcosα-sin2α=0,
∵α∈($\frac{π}{4}$,$\frac{π}{2}$),∴cosα≠0,则
∴tan2α+tanα-6=0,
解得:tanα=2或tanα=-3(舍).
∴cos2α=$co{s}^{2}α-si{n}^{2}α=\frac{co{s}^{2}α-si{n}^{2}α}{co{s}^{2}α+si{n}^{2}α}$=$\frac{1-ta{n}^{2}α}{1+ta{n}^{2}α}$=$\frac{1-4}{1+4}=-\frac{3}{5}$.
sin2α=tan2α•cos2α=$\frac{2tanα}{1-ta{n}^{2}α}•cos2α$=$\frac{4}{5}$.
∴$sin({2α+\frac{π}{4}})$=sin2α•cos$\frac{π}{4}$+cos2α•sin$\frac{π}{4}$=$\frac{4}{5}×\frac{\sqrt{2}}{2}-\frac{3}{5}×\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{10}$.
点评 本题考查三角函数的化简求值,考查同角三角函数基本关系式的应用及两角和的正弦,是基础题.
练习册系列答案
相关题目
17.函数f(x)=$\frac{1}{3}$x3-ax在R上是增函数,则实数a的取值范围是( )
| A. | a≥0 | B. | a≤0 | C. | a>0 | D. | a<0 |
18.设α,β为锐角,且sin α=$\frac{\sqrt{5}}{5}$,cos β=$\frac{{3\sqrt{10}}}{10}$,则α+β的值为( )
| A. | $\frac{3}{4}$π | B. | $\frac{5}{4}$π | C. | $\frac{π}{4}$ | D. | $\frac{π}{4}或\frac{3π}{4}$ |
9.点M(-2,b)在不等式2x-3y+5<0表示的平面区域内,则b的取值范围是( )
| A. | b>$\frac{1}{3}$ | B. | b>-9 | C. | b<1 | D. | b≤$\frac{1}{3}$ |