题目内容

10.已知函数f(x)=|2x+1|+|2x-3|.
(Ⅰ)解方程f(x)-4=0;
(Ⅱ)若关于x的不等式f(x)≤a解集为空集,求实数a的取值范围.

分析 (Ⅰ)通过讨论x的范围,得到关于x的各个范围内的不等式组,解出取并集即可;
(Ⅱ)问题转化为a<f(x)min,根据绝对值的性质求出f(x)的最小值,从而求出a的范围即可.

解答 解:(Ⅰ)由$f(x)=|{2x+1}|+|{2x-3}|=\left\{\begin{array}{l}-4x+2({x<-\frac{1}{2}})\\ 4({-\frac{1}{2}≤x≤\frac{3}{2}})\\ 4x-2({x>\frac{3}{2}})\end{array}\right.$
∴原方程等价于$\left\{\begin{array}{l}x<-\frac{1}{2}\\-4x+2-4=0\end{array}\right.$或$\left\{\begin{array}{l}-\frac{1}{2}≤x≤\frac{3}{2}\\ 4-4=0\end{array}\right.$或$\left\{\begin{array}{l}x>\frac{3}{2}\\ 4x-2-4=0\end{array}\right.$
解得:Φ或$-\frac{1}{2}≤x≤\frac{3}{2}$或Φ
即方程f(x)-4=0的解为$\left\{{\left.x\right|-\frac{1}{2}≤x≤\frac{3}{2}}\right\}$
(Ⅱ)∵关于x的不等式f(x)≤a解集为空集,
∴a<f(x)min
又∵f(x)=|2x+1|+|2x-3|≥|2x+1|-|2x-3|=4
∴a<4.

点评 本题考查了解绝对值不等式问题,考查绝对值的性质以及转化思想,是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网