ÌâÄ¿ÄÚÈÝ
12£®Ä³¹¤³§µÄÎÛË®´¦Àí³ÌÐòÈçÏ£ºÔʼÎÛË®±ØÏȾ¹ýAϵͳ´¦Àí£¬´¦ÀíºóµÄÎÛË®£¨A¼¶Ë®£©´ïµ½»·±£±ê×¼£¨¼ò³Æ´ï±ê£©µÄ¸ÅÂÊΪp£¨0£¼p£¼1£©£®¾»¯Ñé¼ì²â£¬ÈôÈ·ÈÏ´ï±ê±ã¿ÉÖ±½ÓÅÅ·Å£»Èô²»´ï±êÔò±ØÐë½øÐÐBϵͳ´¦ÀíºóÖ±½ÓÅÅ·Å£®Ä³³§ÏÖÓÐ4¸ö±ê׼ˮÁ¿µÄA¼¶Ë®³Ø£¬·Ö±ðÈ¡Ñù¡¢¼ì²â£®¶à¸öÎÛË®Ñù±¾¼ì²âʱ£¬¼È¿ÉÒÔÖð¸ö»¯Ñ飬Ҳ¿ÉÒÔ½«Èô¸É¸öÑù±¾»ìºÏÔÚÒ»Æð»¯Ñ飮»ìºÏÑù±¾ÖÐÖ»ÒªÓÐÑù±¾²»´ï±ê£¬Ôò»ìºÏÑù±¾µÄ»¯Ñé½á¹û±Ø²»´ï±ê£®Èô»ìºÏÑù±¾²»´ï±ê£¬Ôò¸Ã×éÖи÷¸öÑù±¾±ØÐëÔÙÖð¸ö»¯Ñ飻Èô»ìºÏÑù±¾´ï±ê£¬ÔòÔË®³ØµÄÎÛˮֱ½ÓÅÅ·Å£®
ÏÖÓÐÒÔÏÂËÄÖÖ·½°¸£¬
·½°¸Ò»£ºÖð¸ö»¯Ñ飻
·½°¸¶þ£ºÆ½¾ù·Ö³ÉÁ½×黯Ñ飻
·½°¸Èý£ºÈý¸öÑù±¾»ìÔÚÒ»Æð»¯Ñ飬ʣϵÄÒ»¸öµ¥¶À»¯Ñ飻
·½°¸ËÄ£º»ìÔÚÒ»Æð»¯Ñ飮
»¯Ñé´ÎÊýµÄÆÚÍûֵԽС£¬Ôò·½°¸µÄÔ½¡°ÓÅ¡±£®
£¨¢ñ£© Èô$p=\frac{2}{{\sqrt{5}}}$£¬Çó2¸öA¼¶Ë®Ñù±¾»ìºÏ»¯Ñé½á¹û²»´ï±êµÄ¸ÅÂÊ£»
£¨¢ò£© Èô$p=\frac{2}{{\sqrt{5}}}$£¬ÏÖÓÐ4¸öA¼¶Ë®Ñù±¾ÐèÒª»¯Ñ飬ÇëÎÊ£º·½°¸Ò»£¬¶þ£¬ËÄÖÐÄĸö×î¡°ÓÅ¡±£¿
£¨¢ó£© Èô¡°·½°¸Èý¡±±È¡°·½°¸ËÄ¡±¸ü¡°ÓÅ¡±£¬ÇópµÄȡֵ·¶Î§£®
·ÖÎö £¨¢ñ£©¼ÆËã2¸öA¼¶»ìºÏÑù±¾´ï±êµÄ¸ÅÂÊ£¬ÔÙ¸ù¾Ý¶ÔÁ¢Ê¼þÔÀíÇóµÃËüÃDz»´ï±êµÄ¸ÅÂÊ£»
£¨II£©¼ÆËã·½°¸Ò»£ºÖð¸ö¼ì²â£¬¼ì²â´ÎÊýΪ¦Î=4£»
·½°¸¶þ£º¼ì²â´ÎÊýΪ¦Î2£¬Ôò¦Î2¿ÉÄÜȡֵΪ2£¬4£¬6£¬Çó¸ÅÂÊ·Ö²¼ÁУ¬¼ÆËãÊýѧÆÚÍû£»
·½°¸ËÄ£º»ìÔÚÒ»Æð¼ì²â£¬¼ì²â´ÎÊýΪ¦Î4£¬Ôò¦Î4¿ÉȡֵΪ1£¬5£¬Çó¸ÅÂÊ·Ö²¼ÁУ¬¼ÆËãÊýѧÆÚÍû£»
±È½ÏµÃ³öÑ¡Ôñ·½°¸¼¸×î¡°ÓÅ¡±£»
£¨III£©·½°¸Èý£º»¯Ñé´ÎÊýΪ¦Ç3£¬Ôò¦Ç3¿ÉȡֵΪ2£¬5£¬Çó¸ÅÂÊ·Ö²¼ÁУ¬¼ÆËãÊýѧÆÚÍû£»
·½°¸ËÄ£º»¯Ñé´ÎÊýΪ¦Ç4£¬Ôò¦Ç4¿ÉȡֵΪ1£¬5£¬Çó¸ÅÂÊ·Ö²¼£¬¼ÆËãÊýѧÆÚÍû£»
ÓÉÌâÒâÁв»µÈʽE£¨¦Ç3£©£¼E£¨¦Ç4£©£¬Çó³öpµÄȡֵ·¶Î§£®
½â´ð ½â£º£¨¢ñ£©2¸öA¼¶»ìºÏÑù±¾´ï±êµÄ¸ÅÂÊÊÇ${£¨{\frac{2}{{\sqrt{5}}}}£©^2}=\frac{4}{5}$£¬¡£¨2·Ö£©
ËùÒÔ¸ù¾Ý¶ÔÁ¢Ê¼þÔÀí£¬2¸öA¼¶»ìºÏÑù±¾²»´ï±êµÄ¸ÅÂÊΪ$1-\frac{4}{5}=\frac{1}{5}$£»¡£¨4·Ö£©
£¨II£©·½°¸Ò»£ºÖð¸ö¼ì²â£¬¼ì²â´ÎÊýΪ¦Î=4£»
·½°¸¶þ£ºÓÉ£¨I£©Öª£¬Ã¿×é2¸öÑù±¾µÄ¼ì²âʱ£¬Èô´ï±êÔò¼ì²â´ÎÊýΪ1£¬¸ÅÂÊΪ$\frac{4}{5}$£»
Èô²»´ï±êÔò¼ì²â´ÎÊýΪ3£¬¸ÅÂÊΪ$\frac{1}{5}$£»
¹Ê·½°¸¶þµÄ¼ì²â´ÎÊýΪ¦Î2£¬Ôò¦Î2¿ÉÄÜȡֵΪ2£¬4£¬6£»
Æä¸ÅÂÊ·Ö²¼ÁÐÈçÏ£¬
| ¦Î2 | 2 | 4 | 6 |
| P | ${£¨{\frac{4}{5}}£©^2}$ | $C_2^1¡Á\frac{1}{5}¡Á\frac{4}{5}$ | ${£¨{\frac{1}{5}}£©^2}$ |
·½°¸ËÄ£º»ìÔÚÒ»Æð¼ì²â£¬¼Ç¼ì²â´ÎÊýΪ¦Î4£¬
Ôò¦Î4¿ÉȡֵΪ1£¬5£»Æä¸ÅÂÊ·Ö²¼ÁÐÈçÏ£º
| ¦Î4 | 1 | 5 |
| P | ${£¨{\frac{2}{{\sqrt{5}}}}£©^4}$ | $1-{£¨{\frac{2}{{\sqrt{5}}}}£©^4}$ |
±È½Ï¿ÉµÃE£¨¦Î4£©£¼E£¨¦Î2£©£¼4£¬¹ÊÑ¡Ôñ·½°¸ËÄ×î¡°ÓÅ¡±£»¡£¨9·Ö£©
£¨III£©·½°¸Èý£ºÉ軯Ñé´ÎÊýΪ¦Ç3£¬Ôò¦Ç3¿ÉȡֵΪ2£¬5£»
Æä¸ÅÂÊ·Ö²¼Îª£º
| ¦Ç3 | 2 | 5 |
| P | p3 | 1-p3 |
·½°¸ËÄ£ºÉ軯Ñé´ÎÊýΪ¦Ç4£¬Ôò¦Ç4¿ÉȡֵΪ1£¬5£»
Æä¸ÅÂÊ·Ö²¼Îª£º
| ¦Ç4 | 1 | 5 |
| P | p4 | 1-p4 |
ÓÉÌâÒâµÃE£¨¦Ç3£©£¼E£¨¦Ç4£©£¬ËùÒÔ5-3p3£¼5-4p4£¬½âµÃp£¼$\frac{3}{4}$£»
ËùÒÔµ±$0£¼p£¼\frac{3}{4}$ʱ£¬·½°¸Èý±È·½°¸Ëĸü¡°ÓÅ¡±¡£¨12·Ö£©
µãÆÀ ±¾Ì⿼²éÁËÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ¸ÅÂÊ·Ö²¼ÁÐÓëÊýѧÆÚÍûµÄÓ¦ÓÃÎÊÌ⣬ÊǸÅÂÊ·Ö²¼ÖнÏÄѵÄÌâÄ¿£®
| A£® | £¨2£¬7£© | B£® | £¨13£¬-7£© | C£® | £¨7£¬-1£© | D£® | £¨-1£¬-1£© |
| A£® | 86 | B£® | 87 | C£® | 87.5 | D£® | 88.5 |
| A£® | 0.16 | B£® | 0.32 | C£® | 0.68 | D£® | 0.84 |
| A£® | $\sqrt{6}-1$ | B£® | $\sqrt{6}$ | C£® | $\sqrt{6}+1$ | D£® | $2\sqrt{3}$ |
| A£® | $\sqrt{2}$+$\sqrt{2}$i | B£® | $\frac{{\sqrt{2}}}{2}$+$\frac{{\sqrt{2}}}{2}$i | C£® | 1-i | D£® | 1+i |
| A£® | $\frac{{2\sqrt{14}}}{9}$ | B£® | $\frac{{\sqrt{14}}}{9}$ | C£® | $\frac{{\sqrt{11}}}{5}$ | D£® | $\frac{{2\sqrt{11}}}{5}$ |