题目内容
5.已知|$\overrightarrow{a}$|2=1,|$\overrightarrow{b}$|2=2,($\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{a}$=0,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为( )| A. | 30° | B. | 45° | C. | 60° | D. | 90° |
分析 设$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为θ,则由题意求得$\overrightarrow{a}$•$\overrightarrow{b}$=${\overrightarrow{a}}^{2}$=0,再利用两个向量的数量积的定义求得cosθ的值,可得θ的值.
解答 解:∵已知|$\overrightarrow{a}$|2=1,|$\overrightarrow{b}$|2=2,($\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{a}$=0,∴${\overrightarrow{a}}^{2}$-$\overrightarrow{a}•\overrightarrow{b}$=0,
设$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为θ,则$\overrightarrow{a}$•$\overrightarrow{b}$=${\overrightarrow{a}}^{2}$=1•$\sqrt{2}$•cosθ,求得cosθ=$\frac{\sqrt{2}}{2}$,∴θ=45°,
故选:B.
点评 本题主要考查两个向量的数量积的定义,求两个向量的夹角,属于基础题.
练习册系列答案
相关题目
15.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的图象与x轴的一个交点$(-\frac{π}{12},0)$到其相邻的一条对称轴的距离为$\frac{π}{4}$.若$f(\frac{π}{12})=\frac{3}{2}$,则函数f(x)在$[0,\frac{π}{2}]$上的最小值为( )
| A. | $\frac{1}{2}$ | B. | $-\sqrt{3}$ | C. | $-\frac{{\sqrt{3}}}{2}$ | D. | $-\frac{1}{2}$ |
10.F1,F2分别是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)的左右焦点,点P在双曲线上,满足$\overrightarrow{P{F}_{1}}$$•\overrightarrow{P{F}_{2}}$=0,若△PF1F2的内切圆半径与外接圆半径之比为$\frac{\sqrt{3}-1}{2}$,则该双曲线的离心率为( )
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\sqrt{2}$+1 | D. | $\sqrt{3}$+1 |