ÌâÄ¿ÄÚÈÝ
10£®F1£¬F2·Ö±ðÊÇË«ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¬b£¾0£©µÄ×óÓÒ½¹µã£¬µãPÔÚË«ÇúÏßÉÏ£¬Âú×ã$\overrightarrow{P{F}_{1}}$$•\overrightarrow{P{F}_{2}}$=0£¬Èô¡÷PF1F2µÄÄÚÇÐÔ²°ë¾¶ÓëÍâ½ÓÔ²°ë¾¶Ö®±ÈΪ$\frac{\sqrt{3}-1}{2}$£¬Ôò¸ÃË«ÇúÏßµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©| A£® | $\sqrt{2}$ | B£® | $\sqrt{3}$ | C£® | $\sqrt{2}$+1 | D£® | $\sqrt{3}$+1 |
·ÖÎö ÉèPΪ˫ÇúÏßµÄÓÒÖ§ÉÏÒ»µã£¬ÓÉÏòÁ¿´¹Ö±µÄÌõ¼þ£¬ÔËÓù´¹É¶¨ÀíºÍË«ÇúÏߵ͍Ò壬¿ÉµÃ|PF1|+|PF2|£¬|PF1|•|PF2|£¬ÔÙÓÉÈý½ÇÐεÄÃæ»ý¹«Ê½£¬¿ÉµÃÄÚÇÐÔ²µÄ°ë¾¶£¬ÔÙÓÉÖ±½ÇÈý½ÇÐεÄÍâ½ÓÔ²µÄ°ë¾¶¼´ÎªÐ±±ßµÄÒ»°ë£¬ÓÉÌõ¼þ½áºÏÀëÐÄÂʹ«Ê½£¬¼ÆËã¼´¿ÉµÃµ½ËùÇóÖµ£®
½â´ð ½â£ºÉèPΪ˫ÇúÏßµÄÓÒÖ§ÉÏÒ»µã£¬
$\overrightarrow{P{F}_{1}}$$•\overrightarrow{P{F}_{2}}$=0£¬¼´Îª$\overrightarrow{P{F}_{1}}$¡Í$\overrightarrow{P{F}_{2}}$£¬
Óɹ´¹É¶¨Àí¿ÉµÃ|PF1|2+|PF2|2=|F1F2|2=4c2£¬¢Ù
ÓÉË«ÇúÏߵ͍Òå¿ÉµÃ|PF1|-|PF2|=2a£¬¢Ú
¢Ù-¢Ú2£¬¿ÉµÃ|PF1|•|PF2|=2£¨c2-a2£©£¬
¿ÉµÃ|PF1|+|PF2|=$\sqrt{8{c}^{2}-4{a}^{2}}$£¬
ÓÉÌâÒâ¿ÉµÃ¡÷PF1F2µÄÍâ½ÓÔ²µÄ°ë¾¶Îª$\frac{1}{2}$|F1F2|=c£¬
Éè¡÷PF1F2µÄÄÚÇÐÔ²µÄ°ë¾¶Îªr£¬¿ÉµÃ
$\frac{1}{2}$|PF1|•|PF2|=$\frac{1}{2}$r£¨|PF1|+|PF2|+|F1F2|£©£¬
½âµÃr=$\frac{1}{2}$£¨$\sqrt{8{c}^{2}-4{a}^{2}}$-2c£©£¬
¼´ÓÐ$\frac{\sqrt{8{c}^{2}-4{a}^{2}}-2c}{2c}$=$\frac{\sqrt{3}-1}{2}$£¬
»¯¼ò¿ÉµÃ8c2-4a2=£¨4+2$\sqrt{3}$£©c2£¬
¼´ÓÐc2=$\frac{2}{2-\sqrt{3}}$a2£¬
Ôòe=$\frac{c}{a}$=$\frac{2}{\sqrt{3}-1}$=$\sqrt{3}$+1£®
¹ÊÑ¡£ºD£®
µãÆÀ ±¾Ì⿼²éË«ÇúÏßµÄÀëÐÄÂʵÄÇ󷨣¬×¢ÒâÔËÓÃÏòÁ¿´¹Ö±µÄÌõ¼þºÍ¹´¹É¶¨Àí£¬ÒÔ¼°Ë«ÇúÏߵ͍Ò壬¿¼²éÈý½ÇÐεÄÍâ½ÓÔ²µÄ°ë¾¶ºÍÄÚÇÐÔ²°ë¾¶µÄÇ󷨣¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | µÚÒ»ÏóÏÞ | B£® | µÚ¶þÏóÏÞ | C£® | µÚÈýÏóÏÞ | D£® | µÚËÄÏóÏÞ |
| A£® | 2»ò-4 | B£® | -2»ò4 | C£® | $\frac{2}{3}$ | D£® | $-\frac{2}{3}$ |