题目内容
已知双曲线x2-=1的左顶点为A1,右焦点为F2,P为双曲线右支上一点,则的最小值为( ).
A.-2 B.- C.1 D.0
A
已知过抛物线y2=2px(p>0)的焦点❶,斜率为2的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点,且|AB|=9.❷
(1)求该抛物线的方程;
(2)O为坐标原点,C为抛物线上一点,❸若=+λ,求λ的值.
在平面直角坐标系xOy中,直线3x+4y-5=0与圆x2+y2=4相交于A,B两点,则弦AB的长等于( ).
A.3 B.2 C. D.1
在平面直角坐标系xOy中,经过点(0,)且斜率为k的直线l与椭圆+y2=1有两个不同的交点P和Q.
(1)求k的取值范围;
(2)设椭圆与x轴正半轴、y轴正半轴的交点分别为A,B,是否存在常数k,使得向量+与垂直?如果存在,求k值;如果不存在,请说明理由.
在平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率e= ,且椭圆C上的点到Q(0,2)的距离的最大值为3.
(1)求椭圆C的方程;
(2)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=1与圆O:x2+y2=1相交于不同的两点A,B,且△OAB的面积最大?若存在,求出点M的坐标及相对应的△OAB的面积;若不存在,请说明理由.
椭圆+=1(a>b>0)与直线x+y-1=0相交于P,Q两点,且OP⊥OQ(O为原点).
(1)求证:+等于定值;
(2)若椭圆的离心率e∈,求椭圆长轴长的取值范围.
若集合,则下列各式中正确的是( )
A. B. C. D.
设是定义在上的周期为的函数,当时,,则____________。
已知A,B都是锐角,且A+B≠,(1+tan A)(1+tan B)=2,求证:A+B=.