题目内容

2.设函数f(x)是定义在(-∞,0)上的可导函数,其导函数为f'(x),且有2f(x)+xf'(x)>x2,则不等式(x+2017)2f(x+2017)-f(-1)<0的解集为(-2018,-2017).

分析 令g(x)=x2f(x),x∈(-∞,0),问题转化为g(2017+x)<g(-1),根据函数的单调性得到关于x的不等式组,解出即可.

解答 解:令g(x)=x2f(x),x∈(-∞,0),
故g′(x)=x[2f(x)+xf′(x)],
而2f(x)+xf'(x)>x2
故x<0时,g′(x)<0,g(x)递减,
由(x+2017)2f(x+2017)-f(-1)<0,
得g(2017+x)<g(-1),
故$\left\{\begin{array}{l}{2017+x<0}\\{2017+x>-1}\end{array}\right.$,解得:-2018<x<-2017,
故答案为:(-2018,-2017).

点评 本题考查了函数的单调性问题,考查导数的应用,是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网