题目内容

已知数列{an}是等差数列,数列{bn}是公比大于零的等比数列,且a1=b1=2,a3=b3=8.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)记cn=abn,求数列{cn}的前n项和Sn
考点:等差数列与等比数列的综合
专题:等差数列与等比数列
分析:(Ⅰ)设出等差数列{an}的公差为d,等比数列{bn}的公比为q,且q>0.由已知列式求得等差数列的公差和等比数列的公比,代入等差数列和等比数列的通项公式得答案;
(Ⅱ)由cn=abn结合数列{an}和{bn}的通项公式得到数列{cn}的通项公式,结合等比数列的前n项和求得数列{cn}的前n项和Sn
解答: 解:(Ⅰ)设等差数列{an}的公差为d,等比数列{bn}的公比为q,且q>0.
由a1=2,a3=8,得8=2+2d,解得d=3.
∴an=2+(n-1)×3=3n-1,n∈N*
由b1=2,b3=8,得8=2q2,又q>0,解得q=2.
bn=2×2n-1=2n,n∈N*
(Ⅱ)∵cn=abn=3×2n-1
Sn=3×
2(1-2n)
1-2
-n
=3×2n+1-n-6.
点评:本题考查了等差数列与等比数列的通项公式,考查了等比数列的前n项和,是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网