题目内容
不等式|x|>
的解集是( )
| 1 |
| x |
| A、(-∞,-1)∪(1,+∞) |
| B、(-∞,0)∪(1,+∞) |
| C、(-1,0)∪(1,+∞) |
| D、(-∞,-1)∪(0,1) |
考点:绝对值不等式的解法
专题:不等式的解法及应用
分析:由题意可得,x<0,或
,由此解得x的范围.
|
解答:
解:由不等式|x|>
可得 x<0,或
,解得 x<0,或x>1,
故选:B.
| 1 |
| x |
|
故选:B.
点评:本题主要考查绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于基础题.
练习册系列答案
相关题目
已知a、b∈R,a+bi是虚数的充分必要条件是( )
| A、ab≠0 | B、a≠0 |
| C、b≠0 | D、a=0且b≠0 |
| A、 |
| B、 |
| C、 |
| D、 |
已知tanα=-
,sinβ=
,β∈(
,π),则tan(2α-β)=( )
| 1 |
| 2 |
| 3 |
| 5 |
| π |
| 2 |
A、
| ||
B、-
| ||
C、
| ||
D、-
|
| A、-2 | B、-4 | C、-6 | D、0 |
设a∈R,若函数y=ex+3ax,x∈R有大于零的极值点,则( )
| A、a>-3 | ||
| B、a<-3 | ||
C、a>-
| ||
D、a<-
|