题目内容

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),点A,F分别是椭圆C的左顶点和左焦点,点P是⊙O:x2+y2=b2上的动点,若$\frac{|AP|}{|FP|}$是常数,则椭圆C的离心率为$\frac{\sqrt{5}-1}{2}$.

分析 设F(-c,0),由c2=a2-b2可求c,P(x1,y1),要使得$\frac{|AP|}{|FP|}$是常数,则有(x1+a)2+y12=λ[(x1+c)2+y12]比较两边可得c,a的关系,结合椭圆的离心率公式,解方程可得可求.

解答 解:设F(-c,0),c2=a2-b2,A(-a,0),P(x1,y1),
使得$\frac{|AP|}{|FP|}$是常数,
设$\frac{|AP|}{|FP|}$=$\sqrt{λ}$,则有(x1+a)2+y12=λ[(c+x12+y12](x,λ是常数),
即b2+2ax1+a2=λ(b2+2cx1+c2),
比较两边,b2+a2=λ(b2+c2),a=λc,
故cb2+ca2=a(b2+c2),即ca2-c3+ca2=a3
即e3-2e+1=0,
∴(e-1)(e2+e-1)=0,
∴e=1或e=$\frac{-1±\sqrt{5}}{2}$,
∵0<e<1,∴e=$\frac{\sqrt{5}-1}{2}$.
故答案为:$\frac{\sqrt{5}-1}{2}$.

点评 本题考查椭圆的简单性质,主要考查椭圆的离心率,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网