ÌâÄ¿ÄÚÈÝ
12£®Ï±íÌṩÁËij³§½ÚÄܽµºÄ¼¼Êõ¸ÄÔìºóÉú²ú¼×²úÆ·¹ý³ÌÖмǼµÄ²úÁ¿x£¨¶Ö£©ÓëÏàÓ¦µÄÉú²úÄܺÄy£¨¶Ö±ê׼ú£©µÄ¼¸×é¶ÔÕÕÊý¾Ý£®| x | 2 | 3 | 4 | 5 |
| y | 1.5 | 2 | 3 | 3.5 |
£¨2£©ÒÑÖª¸Ã³§¼¼¸Äǰ100¶Ö¼×²úÆ·µÄÉú²úÄܺÄΪ85¶Ö±ê׼ú£®ÊÔ¸ù¾Ý£¨2£©Çó³öµÄ»Ø¹é·½³Ì£¬Ô¤²âÉú²ú100¶Ö¼×²úÆ·µÄÉú²úÄܺıȼ¼¸Äǰ½µµÍ¶àÉÙ¶Ö±ê׼ú£¿
²Î¿¼¹«Ê½£º$\left\{\begin{array}{l}\hat b=\frac{{\sum_{i=1}^n{£¨{x_i}-\overline x£©£¨{y_i}-\overline y£©}}}{{\sum_{i=1}^n{{{£¨{x_i}-\overline x£©}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}\\ \hat a=\overline y-\hat b\overline x\end{array}\right.$£®
·ÖÎö ½â£¨1£©¸ù¾ÝÌâÄ¿ÖеĹ«Ê½£¬¼ÆËã$\overline{x}$¡¢$\overline{y}$£¬Çó³ö»Ø¹éÖ±ÏßµÄϵÊý$\stackrel{¡Ä}{b}$¡¢$\stackrel{¡Ä}{a}$£¬Ð´³ö»Ø¹é·½³Ì£»
£¨2£©¸ù¾Ý»Ø¹éÖ±Ïß·½³Ì£¬¼ÆËãx=100ʱ$\stackrel{¡Ä}{y}$µÄÖµ£¬µÃ³ö½µµÍ¶àÉÙ¶Ö±ê׼ú£®
½â´ð ½â£¨1£©¼ÆËã$\overline{x}$=$\frac{2+3+4+5}{4}$=3.5£¬$\overline{y}$=2.5£¬
$\sum_{i=1}^{4}$xiyi=2¡Á1.5+3¡Á2+4¡Á3+5¡Á3.5=38.5£®
$\sum_{i=1}^{4}$${{x}_{i}}^{2}$=22+32+42+52=54£¬
ËùÒԻع鷽³ÌµÄϵÊýΪ$\stackrel{¡Ä}{b}$=$\frac{{{\sum_{i=1}^{4}x}_{i}y}_{i}-4\overline{x}\overline{y}}{{{\sum_{i=1}^{4}x}_{i}}^{2}-{4\overline{x}}^{2}}$=$\frac{38.5-4¡Á3.5¡Á2.5}{54-4{¡Á3.5}^{2}}$=0.7£¬¡£¨5·Ö£©
$\stackrel{¡Ä}{a}$=$\overline{y}$-$\stackrel{¡Ä}{b}$$\overline{x}$=2.5-0.7¡Á3.5=0.05£®
ËùÒÔ£¬ËùÇóµÄ»Ø¹é·½³ÌΪ$\stackrel{¡Ä}{y}$=0.7x+0.05£®¡£¨8·Ö£©
£¨2£©ÏÖÔÚÉú²ú100¶Ö¼×²úÆ·ÓÃú
$\stackrel{¡Ä}{y}$=0.7¡Á100+0.05=70.05£¬
ËùÒÔ£¬½µµÍ85-70.05=14.95£¨¶Ö±ê׼ú£©£®¡£¨12·Ö£©
µãÆÀ ±¾Ì⿼²éÁËÇòÏßÐԻع鷽³ÌµÄÓ¦ÓÃÎÊÌ⣬Ҳ¿¼²éÁ˼ÆËãÄÜÁ¦µÄÓ¦ÓÃÎÊÌ⣬ÊÇ»ù´¡ÌâÄ¿£®
| ÄÐÐÔ | Å®ÐÔ | ºÏ¼Æ | |
| ·´¸Ð | 10 | ||
| ²»·´¸Ð | 8 | ||
| ºÏ¼Æ | 30 |
£¨I£©Ç뽫ÉÏÃæµÄÁÐÁª±í²¹³äÍêÕû£¨ÔÚ´ðÌ⿨ÉÏÖ±½ÓÌîд½á¹û£¬²»ÐèҪдÇó½â¹ý³Ì£©£¬²¢¾Ý´Ë×ÊÁÏ·ÖÎö·´¸Ð¡°Öйúʽ¹ýÂí·¡±ÓëÐÔ±ðÊÇ·ñÓйأ¿£¨²Î¿¼¹«Ê½£º${K^2}=\frac{{n{{£¨ad-bc£©}^2}}}{£¨a+b£©£¨a+c£©£¨c+d£©£¨b+d£©}$£©
£¨¢ò£©Èô´ÓÕâ30ÈËÖеÄÅ®ÐÔ·ÈËÖÐËæ»ú³éÈ¡2È˲μÓÒ»»î¶¯£¬¼Ç·´¸Ð¡°Öйúʽ¹ýÂí·¡±µÄÈËÊýΪX£¬ÇóXµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®
| A£® | 85 | B£® | 84 | C£® | 82 | D£® | 81 |
| A£® | e | B£® | e+1 | C£® | 2e | D£® | e+2 |