题目内容

6.若f(x)是定义在(-∞,+∞)上的偶函数,?x1,x2∈[0,+∞)(x1≠x2),有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}<0$,则(  )
A.f(3)<f(1)<f(-2)B.f(1)<f(-1)<f(3)C.f(-2)<f(1)<f(3)D.f(3)<f(-2)<f(1)

分析 根据条件判断函数的单调性,利用函数奇偶性和单调性的关系进行比较即可.

解答 解:∵?x1,x2∈[0,+∞)(x1≠x2),有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}<0$,
∴当x≥0时函数f(x)为减函数,
∵f(x)是定义在(-∞,+∞)上的偶函数,
∴f(3)<f(2)<f(1),
即f(3)<f(-2)<f(1),
故选:D

点评 本题主要考查函数值的大小比较,根据条件判断函数的单调性,利用函数奇偶性和单调性的关系是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网