题目内容
10.已知平面内两点A(8,-6),B(2,2).(1)求AB的中垂线l的方程;
(2)一束光线从B点射向y轴,若反射光线恰好经过点A,求反射光线所在的直线方程.
分析 (1)求出AB的中点坐标、AB的斜率,即可求AB的中垂线l的方程;
(2)求出B关于y轴对称点的坐标,即可求反射光线所在的直线方程.
解答 解:(1)AB的中点坐标为(5,-2),AB的斜率为$\frac{2+6}{2-8}$=-$\frac{4}{3}$,
∴AB的中垂线l的方程y+2=$\frac{3}{4}$(x-5),即3x-4y-23=0;
(2)B关于y轴对称点的坐标为(-2,2),
∴反射光线所在的直线方程为$\frac{y+6}{2+6}=\frac{x-8}{-2-8}$,即4x+5y-2=0.
点评 本题考查直线方程,考查学生的计算能力,比较基础.
练习册系列答案
相关题目
3.近年来,我国电子商务蓬勃发展.2016年“618”期间,某网购平台的销售业绩高达516亿元人民币,与此同时,相关管理部门推出了针对该网购平台的商品和服务的评价系统.从该评价系统中选出200次成功交易,并对其评价进行统计,网购者对商品的满意率为0.6,对服务的满意率为0.75,其中对商品和服务都满意的交易为80次.
(Ⅰ) 根据已知条件完成下面的2×2列联表,并回答能否有99%的把握认为“网购者对商品满意与对服务满意之间有关系”?
(Ⅱ) 若将频率视为概率,某人在该网购平台上进行的3次购物中,设对商品和服务都满
意的次数为随机变量X,求X的分布列和数学期望EX.
附:K2=$\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$(其中n=a+b+c+d为样本容量)
(Ⅰ) 根据已知条件完成下面的2×2列联表,并回答能否有99%的把握认为“网购者对商品满意与对服务满意之间有关系”?
| 对服务满意 | 对服务不满意 | 合计 | |
| 对商品满意 | 80 | ||
| 对商品不满意 | |||
| 合计 | 200 |
意的次数为随机变量X,求X的分布列和数学期望EX.
附:K2=$\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$(其中n=a+b+c+d为样本容量)
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
5.在边长为1的菱形ABCD中,∠ABC=60°,把菱形沿对角线AC折起,使折起后BD=$\frac{\sqrt{3}}{2}$,则二面角B-AC-D的余弦值为( )
| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2\sqrt{2}}{3}$ | D. | $\frac{\sqrt{3}}{2}$ |
19.命题“若(a-2)(b-3)=0,则a=2或b=3”的否命题是( )
| A. | 若(a-2)(b-3)≠0,则a≠2或b≠3 | B. | 若(a-2)(b-3)≠0,则a≠2且b≠3 | ||
| C. | 若(a-2)(b-3)=0,则a≠2或b≠3 | D. | 若(a-2)(b-3)=0,则a≠2且b≠3 |