题目内容
18.已知函数f(x)=cosx-8cos4$\frac{x}{4}$.(Ⅰ)求该函数的最小正周期;
(Ⅱ)求函数y=f(2x-$\frac{π}{6}$)在x∈[-$\frac{π}{6}$,$\frac{π}{4}$]上的值域.
分析 (Ⅰ)利用二倍角以及辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,再利用周期公式求函数的最小正周期.
(Ⅱ)根据函数y=f(2x-$\frac{π}{6}$)求出解析式,x∈[-$\frac{π}{6}$,$\frac{π}{4}$]上时,求出内层函数的取值范围,结合三角函数的图象和性质,求出f(x)的最大值和最小值,即得到f(x)的值域.
解答 解:函数f(x)=cosx-8cos4$\frac{x}{4}$.
化简可得:f(x)=cosx-8(cos2$\frac{x}{4}$)2=cosx-8($\frac{1}{2}+\frac{1}{2}cos\frac{x}{2}$)2=-2cos$\frac{x}{2}$-3
(Ⅰ)∴该函数的最小正周期T=$\frac{2π}{\frac{1}{2}}$=4π;
(Ⅱ)由函数y=f(2x-$\frac{π}{6}$)=-2cos(x-$\frac{π}{12}$)-3.
x∈[-$\frac{π}{6}$,$\frac{π}{4}$]上时,则x-$\frac{π}{12}$∈[$-\frac{π}{4}$,$\frac{π}{3}$]
当2x-$\frac{π}{6}$=$\frac{π}{3}$,函数y取得最大值为-4.
当2x-$\frac{π}{6}$=0,函数y取得最小值为-5.
∴函数y=f(2x-$\frac{π}{6}$)在x∈[-$\frac{π}{6}$,$\frac{π}{4}$]上的值域为[-5,-4].
点评 本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,利用三角函数公式将函数进行化简是解决本题的关键.属于中档题.
练习册系列答案
相关题目
9.在复平面内,复数z=cos 3+isin 3(i为虚数单位),则|z|为( )
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
6.已知集合A={x∈N|1<x<log2k},若集合A中至少有4个元素,则( )
| A. | k>32 | B. | k≥32 | C. | k>16 | D. | k≥16 |
13.设双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点分别为F1,F2,若在曲线C的右支上存在点P,使得△PF1F2的内切圆半径为a,圆心记为M,又△PF1F2的重心为G,满足MG平行于x轴,则双曲线C的离心率为( )
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
10.如果复数$\frac{2-ai}{1+i}$(其中i为虚数单位,a∈R)为纯虚数,则a=( )
| A. | -2 | B. | 0 | C. | 1 | D. | 2 |
8.已知复数z,满足z(2-i)=2+4i,则复数z等于( )
| A. | 2i | B. | -2i | C. | 2+i | D. | -2+i |