题目内容
6.已知集合A={x∈N|1<x<log2k},若集合A中至少有4个元素,则( )| A. | k>32 | B. | k≥32 | C. | k>16 | D. | k≥16 |
分析 首先确定集合A,由此得到log2k>3,由此求得k的取值范围.
解答 解:∵集合A={x∈N|1<x<log2k},集合A中至少有4个元素,
∴A={2,3,4,5},
∴log2k>5,
∴k>32.
故选:A.
点评 本题考查了集合的化简与应用,属于基础题.
练习册系列答案
相关题目
2.在边长为2的正方形ABCD内部取一点M,则满足∠AMB为锐角的概率是( )
| A. | $\frac{π}{4}$ | B. | $\frac{π}{8}$ | C. | $1-\frac{π}{4}$ | D. | $1-\frac{π}{8}$ |
3.某印刷厂为了研究印刷单册书籍的成本y(单位:元)与印刷册数x(单位:千册)之间的关系,在印制某种书籍时进行了统计,相关数据见下表:
根据以上数据,技术人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲:${\stackrel{∧}{y}}^{(1)}$=$\frac{4}{x}+1.1$,方程乙:$\stackrel{{∧}^{(2)}}{y}$=$\frac{6.4}{x^2}+1.6$.
(1)为了评价两种模型的拟合效果,完成以下任务.
①完成下表(计算结果精确到0.1);
②分别计算模型甲与模型乙的残差平方和Q1及Q2,并通过比较Q1,Q2的大小,判断哪个模型拟合效果更好.
(2)该书上市之后,受到广大读者热烈欢迎,不久便全部售罄,于是印刷厂决定进行二次印刷.根据市场调查,新需求量为8千册(概率0.8)或10千册(概率0.2),若印刷厂以每册5元的价格将书籍出售给订货商,问印刷厂二次印刷8千册还是10千册能获得更多利润?(按(1)中拟合效果较好的模型计算印刷单册书的成本)
| 印刷册数 (千册) | 2 | 3 | 4 | 5 | 8 |
| 单册成本 (元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
(1)为了评价两种模型的拟合效果,完成以下任务.
①完成下表(计算结果精确到0.1);
| 印刷册数x(千册) | 2 | 3 | 4 | 5 | 8 | |
| 单册成本y(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
| 模型甲 | 估计值${\stackrel{∧}{{y}_{i}}}^{(1)}$ | 2.4 | 2.1 | 1.6 | ||
| 残差${\stackrel{∧}{{e}_{i}}}^{(1)}$ | 0 | -0.1 | 0.1 | |||
| 模型乙 | 估计值 ${\stackrel{∧}{{y}_{i}}}^{(2)}$ | 2.3 | 2 | 1.9 | ||
| 残差 ${\stackrel{∧}{{e}_{i}}}^{(2)}$ | 0.1 | 0 | 0 | |||
(2)该书上市之后,受到广大读者热烈欢迎,不久便全部售罄,于是印刷厂决定进行二次印刷.根据市场调查,新需求量为8千册(概率0.8)或10千册(概率0.2),若印刷厂以每册5元的价格将书籍出售给订货商,问印刷厂二次印刷8千册还是10千册能获得更多利润?(按(1)中拟合效果较好的模型计算印刷单册书的成本)
1.已知$cosα-sinα=\frac{{\sqrt{2}}}{4}$,则sin2α的值为( )
| A. | $\frac{1}{8}$ | B. | $-\frac{1}{8}$ | C. | $\frac{7}{8}$ | D. | $-\frac{7}{8}$ |
16.若双曲线M:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左、右焦点分别是F1,F2,P为双曲线M上一点,且|PF1|=15,|PF2|=7,|F1F2|=10,则双曲线M的离心率为( )
| A. | $\frac{5}{4}$ | B. | $\frac{5}{3}$ | C. | 2 | D. | 3 |