题目内容

7.已知${(2x+1)^4}={a_0}+{a_1}({x+1})+{a_2}{({x+1})^2}+{a_3}{({x+1})^3}+{a_4}{({x+1})^4}$,则a1+a2+a3+a4的值是0.

分析 在所给的等式中,令x=-1,可得a0=1,再令x=0,可得a0+a1+a2+a3+a4 =1,从而求得a1+a2+a3+a4的值.

解答 解:在已知${(2x+1)^4}={a_0}+{a_1}({x+1})+{a_2}{({x+1})^2}+{a_3}{({x+1})^3}+{a_4}{({x+1})^4}$ 中,令x=-1,可得a0=1,
令x=0,可得a0+a1+a2+a3+a4 =1,∴a1+a2+a3+a4=0,
故答案为:0.

点评 本题主要考查二项式定理的应用,是给变量赋值的问题,关键是根据要求的结果,选择合适的数值代入,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网