题目内容
已知数列{an}中,a1=1,当n≥2时,其前n项和Sn满足Sn2-anSn+2an=0.
(1)求an.
(2)若bn=2n-1,记{
}前n项和为Tn,求证:Tn<3.
(1)求an.
(2)若bn=2n-1,记{
| 1 |
| bnSn |
考点:数列与不等式的综合
专题:计算题,证明题,等差数列与等比数列
分析:(1)由Sn2-anSn+2an=0由推出数列{
}是等差数列,进而求出Sn,再求出an;
(2)用裂项求和法求出Tn,不等式得证.
| 1 |
| Sn |
(2)用裂项求和法求出Tn,不等式得证.
解答:
解:(1)由S1=a1=1,Sn2-anSn+2an=0知,
(1+a2)2-a2(1+a2)+2a2=0,
解得,a2=-
,S2=
,
∵Sn2-anSn+2an=0,
∴Sn2-(Sn-Sn-1)Sn+2(Sn-Sn-1)=0,
∴Sn-1Sn+2Sn-2Sn-1=0,
∴
-
=
,
则数列{
}是以1为首项,
为公差的等差数列,
则
=1+
(n-1)=
,
则Sn=
,
则当n≥2时,an=Sn-Sn-1=
-
=-
;
则an=
.
(2)由题意,
Tn=
×1+
×
+
×2+…+
×
①;
2Tn=2×1+
×
+
×2+…+
×
②;
②-①得,
Tn=2+
(
+
+
+…+
)-
×
=2+
×
-
=3-
<3.
(1+a2)2-a2(1+a2)+2a2=0,
解得,a2=-
| 1 |
| 3 |
| 2 |
| 3 |
∵Sn2-anSn+2an=0,
∴Sn2-(Sn-Sn-1)Sn+2(Sn-Sn-1)=0,
∴Sn-1Sn+2Sn-2Sn-1=0,
∴
| 1 |
| Sn |
| 1 |
| Sn-1 |
| 1 |
| 2 |
则数列{
| 1 |
| Sn |
| 1 |
| 2 |
则
| 1 |
| Sn |
| 1 |
| 2 |
| n+1 |
| 2 |
则Sn=
| 2 |
| n+1 |
则当n≥2时,an=Sn-Sn-1=
| 2 |
| n+1 |
| 2 |
| n |
| 2 |
| n(n+1) |
则an=
|
(2)由题意,
Tn=
| 1 |
| 21-1 |
| 1 |
| 22-1 |
| 3 |
| 2 |
| 1 |
| 23-1 |
| 1 |
| 2n-1 |
| n+1 |
| 2 |
2Tn=2×1+
| 1 |
| 21-1 |
| 3 |
| 2 |
| 1 |
| 22-1 |
| 1 |
| 2n-2 |
| n+1 |
| 2 |
②-①得,
Tn=2+
| 1 |
| 2 |
| 1 |
| 21-1 |
| 1 |
| 22-1 |
| 1 |
| 23-1 |
| 1 |
| 2n-2 |
| 1 |
| 2n-1 |
| n+1 |
| 2 |
=2+
| 1 |
| 2 |
1-
| ||
1-
|
| n+1 |
| 2n |
=3-
| n+3 |
| 2n |
点评:本题考查了数列通项公式的求法,同时考查了裂项求和法,第一问的跨度较大,是难点.
练习册系列答案
相关题目