ÌâÄ¿ÄÚÈÝ
¹«°²²¿×îÐÂÐÞ¶©µÄ¡¶»ú¶¯³µ¼Ýʻ֤ÉêÁìºÍʹÓù涨¡·ÓÚ2013Äê1ÔÂ1ÈÕÆðÕýʽʵʩ£¬Ð¹æÊµÊ©ºó£¬»ñÈ¡¼ÝÕÕÒª¾¹ýÈý¸ö¿ÆÄ¿µÄ¿¼ÊÔ£¬ÏÈ¿¼¿ÆÄ¿Ò»£¨ÀíÂÛÒ»£©£¬¿ÆÄ¿Ò»¹ý¹Øºó²ÅÄÜÔÙ¿¼¿ÆÄ¿¶þ£¨×®¿¼ºÍ·¿¼£©£¬¿ÆÄ¿¶þ¹ý¹Øºó»¹Òª¿¼¿ÆÄ¿Èý£¨ÀíÂÛ¶þ£©£®Ö»ÓÐÈý¸ö¿ÆÄ¿¶¼¹ý¹Øºó²ÅÄÜÄõ½¼Ýʻ֤£®Ä³¼ÝУÏÖÓÐ100ÃûÐÂѧԱ£¬µÚÒ»Åú²Î¼Ó¿¼ÊÔµÄ20È˸÷¿ÆÄ¿Í¨¹ýµÄÈËÊýÇé¿öÈçÏÂ±í£º
ÇëÄã¸ù¾Ý±íÖеÄÊý¾Ý£º
£¨¢ñ£©¹À¼Æ¸Ã¼ÝУÕâ100ÃûÐÂѧԱÓжàÉÙÈËÒ»´ÎÐÔ£¨²»²¹¿¼£©»ñÈ¡¼Ýʻ֤£»
£¨¢ò£©µÚÒ»Åú²Î¼Ó¿¼ÊÔµÄ20ÈËÖÐijһѧԱÒѾͨ¹ý¿ÆÄ¿Ò»µÄ¿¼ÊÔ£¬ÇóËûÄÜͨ¹ý¿ÆÄ¿¶þÈ´²»ÄÜͨ¹ý¿ÆÄ¿ÈýµÄ¸ÅÂÊ£»
£¨¢ó£©¸Ã¼ÝУΪµ÷¶¯½Ì¹ÙµÄ¹¤×÷»ý¼«ÐÔ£¬¹æ¶¨ÈôËù½ÌѧԱÿͨ¹ýÒ»¸ö¿ÆÄ¿µÄ¿¼ÊÔ£¬ÔòѧУ½±Àø½Ì¹Ù100Ôª£®ÏÖ´ÓÕâ20ÈËÖÐËæ»ú³éÈ¡1ÈË£¬¼ÇXΪѧУÒòΪ¸ÃѧԱ¶ø½±Àø½Ì¹ÙµÄ½ð¶îÊý£¬ÇóXµÄÊýѧÆÚÍû£®
| ²Î¿¼ÈËÊý | ͨ¹ý¿ÆÄ¿Ò»ÈËÊý | ͨ¹ý¿ÆÄ¿¶þÈËÊý | ͨ¹ý¿ÆÄ¿ÈýÈËÊý |
| 20 | 12 | 4 | 2 |
£¨¢ñ£©¹À¼Æ¸Ã¼ÝУÕâ100ÃûÐÂѧԱÓжàÉÙÈËÒ»´ÎÐÔ£¨²»²¹¿¼£©»ñÈ¡¼Ýʻ֤£»
£¨¢ò£©µÚÒ»Åú²Î¼Ó¿¼ÊÔµÄ20ÈËÖÐijһѧԱÒѾͨ¹ý¿ÆÄ¿Ò»µÄ¿¼ÊÔ£¬ÇóËûÄÜͨ¹ý¿ÆÄ¿¶þÈ´²»ÄÜͨ¹ý¿ÆÄ¿ÈýµÄ¸ÅÂÊ£»
£¨¢ó£©¸Ã¼ÝУΪµ÷¶¯½Ì¹ÙµÄ¹¤×÷»ý¼«ÐÔ£¬¹æ¶¨ÈôËù½ÌѧԱÿͨ¹ýÒ»¸ö¿ÆÄ¿µÄ¿¼ÊÔ£¬ÔòѧУ½±Àø½Ì¹Ù100Ôª£®ÏÖ´ÓÕâ20ÈËÖÐËæ»ú³éÈ¡1ÈË£¬¼ÇXΪѧУÒòΪ¸ÃѧԱ¶ø½±Àø½Ì¹ÙµÄ½ð¶îÊý£¬ÇóXµÄÊýѧÆÚÍû£®
¿¼µã£ºÀëÉ¢ÐÍËæ»ú±äÁ¿µÄÆÚÍûÓë·½²î,¹Åµä¸ÅÐͼ°Æä¸ÅÂʼÆË㹫ʽ
רÌ⣺¸ÅÂÊÓëͳ¼Æ
·ÖÎö£º£¨¢ñ£©ÏÈÓɱíÖÐÊý¾ÝÇó³öÒ»´ÎÐÔ£¨²»²¹¿¼£©»ñÈ¡¼Ýʻ֤µÄƵÂÊ£¬ÔÙÓÉѧԱÊýÄÜÇó³öÒ»´ÎÐÔ£¨²»²¹¿¼£©»ñÈ¡¼Ýʻ֤ÈËÊý£®
£¨¢ò£©É衰ͨ¹ý¿ÆÄ¿Ò»¡¢¶þ¡¢Èý¡±·Ö±ðΪʼþA£¬B£¬C£¬ÀûÓÃÌõ¼þ¸ÅÂʹ«Ê½ÄÜÇó³ö½á¹û£®
£¨¢ó£©ÉèÕâ¸öѧԱһ´ÎÐÔ¹ý¹ØµÄ¿ÆÄ¿ÊýΪY£¬ÓÉÒÑÖªÌõ¼þY=0£¬1£¬2£¬3£¬·Ö±ðÇó³öP£¨Y=0£©£¬P£¨Y=1£©£¬P£¨Y=2£©ºÍP£¨Y=3£©µÄÖµ£¬ÓÉ´ËÄÜÇó³öYµÄ·Ö²¼ÁкÍEY£®
£¨¢ò£©É衰ͨ¹ý¿ÆÄ¿Ò»¡¢¶þ¡¢Èý¡±·Ö±ðΪʼþA£¬B£¬C£¬ÀûÓÃÌõ¼þ¸ÅÂʹ«Ê½ÄÜÇó³ö½á¹û£®
£¨¢ó£©ÉèÕâ¸öѧԱһ´ÎÐÔ¹ý¹ØµÄ¿ÆÄ¿ÊýΪY£¬ÓÉÒÑÖªÌõ¼þY=0£¬1£¬2£¬3£¬·Ö±ðÇó³öP£¨Y=0£©£¬P£¨Y=1£©£¬P£¨Y=2£©ºÍP£¨Y=3£©µÄÖµ£¬ÓÉ´ËÄÜÇó³öYµÄ·Ö²¼ÁкÍEY£®
½â´ð£º
£¨±¾Ð¡ÌâÂú·Ö12·Ö£©
½â£º£¨¢ñ£©ÓɱíÖÐÊý¾Ý¿ÉÖªÒ»´ÎÐÔ£¨²»²¹¿¼£©»ñÈ¡¼Ýʻ֤µÄƵÂÊΪ
=
£¬
¹À¼ÆÕâ100ÃûÐÂѧԱÖÐÓÐ100¡Á
=10ÈËÒ»´ÎÐÔ£¨²»²¹¿¼£©»ñÈ¡¼Ýʻ֤£®£¨3·Ö£©
£¨¢ò£©É衰ͨ¹ý¿ÆÄ¿Ò»¡¢¶þ¡¢Èý¡±·Ö±ðΪʼþA£¬B£¬C£¬
ÔòP£¨A£©=
£¬P£¨B
£©=
£¬
P=P£¨B
|A£©=
=
=
£¨6·Ö£©
£¨¢ó£©ÉèÕâ¸öѧԱһ´ÎÐÔ¹ý¹ØµÄ¿ÆÄ¿ÊýΪY£¬
ÔòY=0£¬1£¬2£¬3£¬
É衰ͨ¹ý¿ÆÄ¿Ò»¡¢¶þ¡¢Èý¡±·Ö±ðΪʼþA£¬B£¬C£¬
ÓÉÌâÉèÖªP£¨A£©=
£¬P£¨AB£©=
£¬P£¨ABC£©=
£¬
¡àP£¨B£©=
=
=
£¬
P£¨C£©=
=
=
£¬
¡àP£¨Y=0£©=P£¨
£©=1-
=
£¬
P£¨Y=1£©=P(A
)=
¡Á(1-
)=
£¬
P£¨Y=2£©=P£¨AB
£©=
¡Á
¡Á(1-
)=
£¬
P£¨Y=3£©=P£¨ABC£©=
¡Á
¡Á
=
£¬
ÔòYµÄ·Ö²¼ÁÐΪ
£¨8·Ö£©
EY=0¡Á
+1¡Á
+2¡Á
+3¡Á
=
£¨10·Ö£©
¶øX=100Y£¬ËùÒÔEX=100EY=100¡Á
=90£¨12·Ö£©
½â£º£¨¢ñ£©ÓɱíÖÐÊý¾Ý¿ÉÖªÒ»´ÎÐÔ£¨²»²¹¿¼£©»ñÈ¡¼Ýʻ֤µÄƵÂÊΪ
| 2 |
| 20 |
| 1 |
| 10 |
¹À¼ÆÕâ100ÃûÐÂѧԱÖÐÓÐ100¡Á
| 1 |
| 10 |
£¨¢ò£©É衰ͨ¹ý¿ÆÄ¿Ò»¡¢¶þ¡¢Èý¡±·Ö±ðΪʼþA£¬B£¬C£¬
ÔòP£¨A£©=
| 12 |
| 20 |
. |
| C |
| 2 |
| 20 |
P=P£¨B
. |
| C |
| ||
|
| 2 |
| 12 |
| 1 |
| 6 |
£¨¢ó£©ÉèÕâ¸öѧԱһ´ÎÐÔ¹ý¹ØµÄ¿ÆÄ¿ÊýΪY£¬
ÔòY=0£¬1£¬2£¬3£¬
É衰ͨ¹ý¿ÆÄ¿Ò»¡¢¶þ¡¢Èý¡±·Ö±ðΪʼþA£¬B£¬C£¬
ÓÉÌâÉèÖªP£¨A£©=
| 12 |
| 20 |
| 4 |
| 20 |
| 2 |
| 20 |
¡àP£¨B£©=
| P(AB) |
| P(A) |
| ||
|
| 1 |
| 3 |
P£¨C£©=
| P(ABC) |
| P(AB) |
| ||
|
| 1 |
| 2 |
¡àP£¨Y=0£©=P£¨
. |
| A |
| 12 |
| 20 |
| 2 |
| 5 |
P£¨Y=1£©=P(A
. |
| B |
| 12 |
| 20 |
| 1 |
| 3 |
| 2 |
| 5 |
P£¨Y=2£©=P£¨AB
. |
| C |
| 12 |
| 20 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 10 |
P£¨Y=3£©=P£¨ABC£©=
| 12 |
| 20 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 10 |
ÔòYµÄ·Ö²¼ÁÐΪ
| Y | 0 | 1 | 2 | 3 | ||||||||
| P |
|
|
|
|
EY=0¡Á
| 2 |
| 5 |
| 2 |
| 5 |
| 1 |
| 10 |
| 1 |
| 10 |
| 9 |
| 10 |
¶øX=100Y£¬ËùÒÔEX=100EY=100¡Á
| 9 |
| 10 |
µãÆÀ£º±¾Ì⿼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁкÍÊýѧÆÚÍû£¬ÊÇÀúÄê¸ß¿¼µÄ±Ø¿¼ÌâÐÍÖ®Ò»£¬½âÌâʱҪעÒâÌõ¼þ¸ÅÂʹ«Ê½µÄÁé»îÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÓÃÇØ¾ÅÉØËã·¨Çó¶àÏîʽf£¨x£©=x6-5x5+6x4+x2+0.3x+2£¬ÔÚx=-2ʱ£¬¦Ô2µÄֵΪ£¨¡¡¡¡£©
| A¡¢-161.7 | B¡¢-40 |
| C¡¢20 | D¡¢81 |
ÈôµãA£¨1£¬0£©ºÍµãB£¨4£¬0£©µ½Ö±ÏßlµÄ¾àÀëÒÀ´ÎΪ1ºÍ2£¬ÔòÕâÑùµÄÖ±ÏßÓУ¨¡¡¡¡£©
| A¡¢1Ìõ | B¡¢2Ìõ | C¡¢3Ìõ | D¡¢4Ìõ |