题目内容

19.下列函数是正态分布密度函数的是(  )
A.f(x)=$\frac{1}{{\sqrt{2π}σ}}{e^{\frac{{{{(x-r)}^2}}}{2σ}}}$B.f(x)=$\frac{{\sqrt{2π}}}{2π}{e^{-\frac{x^2}{2}}}$
C.f(x)=$\frac{1}{{2\sqrt{2}π}}{e^{\frac{{{{(x-1)}^2}}}{4}}}$D.f(x)=$\frac{1}{{\sqrt{2π}}}{e^{\frac{x^2}{2}}}$

分析 直接在正态密度函数f(x)=$\frac{1}{\sqrt{2π}δ}{e}^{-\frac{(x-μ)^{2}}{2{δ}^{2}}}$中去μ=0,δ=1得答案.

解答 解:由正态密度函数的特征f(x)=$\frac{1}{\sqrt{2π}δ}{e}^{-\frac{(x-μ)^{2}}{2{δ}^{2}}}$可知,
当δ=1,μ=0时,正态密度函数f(x)=$\frac{1}{\sqrt{2π}δ}{e}^{-\frac{(x-μ)^{2}}{2{δ}^{2}}}$=$\frac{{\sqrt{2π}}}{2π}{e^{-\frac{x^2}{2}}}$=$\frac{1}{\sqrt{2π}}{e}^{-\frac{{x}^{2}}{2}}$为标准正态密度函数,
故选:B.

点评 本题考查正态分布曲线的特点及曲线所表示的意义,关键是熟记正态密度函数的特征,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网