题目内容

已知函数f(x)=ax2-(a+2)x+lnx
(1)若a=1,求函数f(x)的极值;
(2)当a>0时,若f(x)在区间[1,e]的最小值为-2,求a的取值范围.
考点:利用导数研究函数的极值,利用导数研究函数的单调性,利用导数求闭区间上函数的最值
专题:计算题,导数的综合应用
分析:(1)求出a=1的函数的导数,求出单调增区间和减区间,从而得到极大值和极小值;
(2)求出导数,并分解因式,对a讨论,分①当0<
1
a
≤1②当1<
1
a
<e时③当
1
a
≥e时,分别求出最小值,并与-2比较,即可得到a的取值范围.
解答: 解:(1)a=1,f(x)=x2-3x+lnx,定义域为(0,+∞),
f′(x)=2x-3+
1
x
=
2x2-3x+1
x
=
(2x-1)(x-1)
x

当x>1或0<x<
1
2
时f'(x)>0;当
1
2
<x<1
时f'(x)<0
所以函数f(x)的极大值=f(
1
2
)=-
5
4
-ln2

函数f(x)的极小值=f(1)=-2.
(2)函数f(x)=ax2-(a+2)x+lnx的定义域为(0,+∞),
当a>0时,f′(x)=2ax-(a+2)+
1
x
=
2ax2-(a+2)x+1
x
=
(2x-1)(ax-1)
x

令f'(x)=0,则x=
1
2
x=
1
a

①当0<
1
a
≤1,即a≥1时,f(x)在[1,e]上单调递增,
所以f(x)在[1,e]上的最小值是f(1)=-2;
②当1<
1
a
<e时,f(x)在[1,e]上的最小值是f(
1
a
)<f(1)=-2,不合题意;
③当
1
a
≥e时,f(x)在[1,e]上单调递减,
所以f(x)在[1,e]上的最小值是f(e)<f(1)=-2,不合题意.
故a的取值范围为[1,+∞).
点评:本题考查导数的综合应用:求单调区间和求极值,求最值,考查分类讨论的思想方法,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网