题目内容
20.已知正四棱锥的底面边长为$\sqrt{2}$,高为1,则这个正四棱锥的外接球的表面积为4π.分析 由已知可得,外接球球心正好是底面正方形对角线的交点,根据球的表面积公式解之即可.
解答 解:由已知可得,外接球球心正好是底面正方形对角线的交点,故r=1,从而S=4πr2=4π.
故答案为4π.
点评 本题主要考查球的表面积,球的内接体问题,考查计算能力和空间想象能力,属于中档题.
练习册系列答案
相关题目
8.已知函数f(x)=$\left\{\begin{array}{l}{|lnx|,0<x≤2}\\{f(4-x),2<x<4}\end{array}$,若当方程f(x)=m有四个不等实根x1,x2,x3,x4(x1<x2<x3<x4)时,不等式kx3x4+x12+x22≥k+11恒成立,则实数k的最小值为 ( )
| A. | $\frac{9}{8}$ | B. | 2-$\frac{\sqrt{3}}{2}$ | C. | $\frac{25}{16}$ | D. | $\sqrt{3}$-$\frac{1}{2}$ |
15.若$\frac{cos2α}{sinα-cosα}$=-$\frac{1}{2}$,则sin(α+$\frac{π}{4}$)的值为( )
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{2}}{4}$ | D. | -$\frac{\sqrt{2}}{4}$ |
5.直线l:x+y+a=0与圆C:x2+y2=3截得的弦长为$\sqrt{3}$,则a=( )
| A. | $±\frac{3}{2}$ | B. | $±3\sqrt{2}$ | C. | ±3 | D. | $±\frac{3}{2}\sqrt{2}$ |
12.在极坐标系中,点(1,$\frac{π}{4}$)与点(1,$\frac{3π}{4}$)的距离为( )
| A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | $\sqrt{5}$ |
10.已知x,y满足不等式组$\left\{\begin{array}{l}{2x-y≤0}\\{x-2y+3≥0}\\{x≥0}\end{array}\right.$,则满足条件的P(x,y)表示的平面区域的面积等于( )
| A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{4}$ | D. | $\frac{\sqrt{2}}{2}$ |