ÌâÄ¿ÄÚÈÝ
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©ÊǺ¯Êýf£¨x£©=1+log2
µÄͼÏóÉÏÈÎÒâÁ½µã£¬ÇÒ
=
£¨
+
£©£¬ÒÑÖªµãMµÄºá×ø±êΪ
£®
£¨1£©ÇóÖ¤£ºMµãµÄ×Ý×ø±êΪ¶¨Öµ£»
£¨2£©ÈôSn=f£¨
£©+f£¨
£©+¡+f£¨
£©£¬n¡ÊN*£¬ÇÒn¡Ý2£¬ÇóSn£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬ÒÑÖªan=
£¬TnΪÊýÁÐ{an}µÄǰnÏîºÍ£¬ÈôTn£¼¦Ë¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£¬ÊÔÇó¦ËµÄȡֵ·¶Î§£®
| x |
| 1-x |
| OM |
| 1 |
| 2 |
| OA |
| OB |
| 1 |
| 2 |
£¨1£©ÇóÖ¤£ºMµãµÄ×Ý×ø±êΪ¶¨Öµ£»
£¨2£©ÈôSn=f£¨
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬ÒÑÖªan=
|
¿¼µã£ºÊýÁÐÓ뺯ÊýµÄ×ÛºÏ,ÊýÁеÄÇóºÍ
רÌ⣺×ÛºÏÌâ,µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ
·ÖÎö£º£¨1£©È·¶¨MÊÇA£¬BµÄÖе㣬ÀûÓõãMµÄºá×ø±êΪ
£¬¼´¿ÉÖ¤Ã÷MµãµÄ×Ý×ø±êΪ¶¨Öµ£»
£¨2£©ÓÉ£¨1£©Öª£¬x1+x2=1£¬y1+y2=1£¬ÀûÓõ¹ÐòÏà¼Ó·¨£¬¿ÉÇóSn£»
£¨3£©ÀûÓÃÁÑÏî·¨ÇóºÍ£¬¼´¿ÉÇó¦ËµÄȡֵ·¶Î§£®
| 1 |
| 2 |
£¨2£©ÓÉ£¨1£©Öª£¬x1+x2=1£¬y1+y2=1£¬ÀûÓõ¹ÐòÏà¼Ó·¨£¬¿ÉÇóSn£»
£¨3£©ÀûÓÃÁÑÏî·¨ÇóºÍ£¬¼´¿ÉÇó¦ËµÄȡֵ·¶Î§£®
½â´ð£º
£¨1£©Ö¤Ã÷£º¡ß
=
£¨
+
£©£¬
¡àMÊÇA£¬BµÄÖе㣬
¡ßµãMµÄºá×ø±êΪ
£¬
¡àx1+x2=1£¬
¡ày1+y2=1+log2
+1+log2
=1£¬
¡à¡àMµãµÄ×Ý×ø±êΪ¶¨Öµ
£»
£¨2£©½â£ºÓÉ£¨1£©Öª£¬x1+x2=1£¬y1+y2=1£¬
¡ßSn=f£¨
£©+f£¨
£©+¡+f£¨
£©£¬
¡àSn=f£¨
£©+¡+f£¨
£©£¬
ÒÔÉÏÁ½Ê½Ïà¼ÓµÃ£º2Sn=n-1£¬
¡àSn=
£»
£¨3£©½â£ºµ±n¡Ý2ʱ£¬an=4£¨
-
£©£¬
¡àTn=
+4£¨+
-
+¡+
-
£©=
£¬
¡àTn¡Ý2£¬
¡ßTn£¼¦Ë¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£¬
¡à¦Ë£¾2£®
| OM |
| 1 |
| 2 |
| OA |
| OB |
¡àMÊÇA£¬BµÄÖе㣬
¡ßµãMµÄºá×ø±êΪ
| 1 |
| 2 |
¡àx1+x2=1£¬
¡ày1+y2=1+log2
| x1 |
| 1-x1 |
| x2 |
| 1-x2 |
¡à¡àMµãµÄ×Ý×ø±êΪ¶¨Öµ
| 1 |
| 2 |
£¨2£©½â£ºÓÉ£¨1£©Öª£¬x1+x2=1£¬y1+y2=1£¬
¡ßSn=f£¨
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
¡àSn=f£¨
| n-1 |
| n |
| 1 |
| n |
ÒÔÉÏÁ½Ê½Ïà¼ÓµÃ£º2Sn=n-1£¬
¡àSn=
| n-1 |
| 2 |
£¨3£©½â£ºµ±n¡Ý2ʱ£¬an=4£¨
| 1 |
| n+1 |
| 1 |
| n+2 |
¡àTn=
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 2n |
| n+2 |
¡àTn¡Ý2£¬
¡ßTn£¼¦Ë¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£¬
¡à¦Ë£¾2£®
µãÆÀ£º±¾Ì⿼²éÊýÁÐÓ뺯ÊýµÄ×ۺϣ¬¿¼²éÊýÁеÄͨÏîÓëÇóºÍ£¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿