题目内容
14.已知函数f(x)=lg$\frac{100}{\sqrt{1+9{x}^{2}}-3x}$,则f(2017)+f(-2017)=( )| A. | 0 | B. | 2 | C. | 4 | D. | 4034 |
分析 根据对数的运算法则计算f(-x)+f(x)=4,即可得到结论.
解答 解:f(x)=lg$\frac{100}{\sqrt{1+9{x}^{2}}-3x}$,
∴f(-x)+f(x)=lg$\frac{100}{\sqrt{1+9{x}^{2}}-3x}$+lg$\frac{100}{\sqrt{1+9{x}^{2}}+3x}$=lg($\frac{100}{\sqrt{1+9{x}^{2}}-3x}$•$\frac{100}{\sqrt{1+9{x}^{2}}+3x}$)
=lg$\frac{10000}{1+9{x}^{2}-9{x}^{2}}$=lg10000=4,
则f(2017)+f(-2017)=4,
故选:C
点评 本题主要考查函数值的计算,根据对数的运算法则得到f(-x)+f(x)=4是解决本题的关键.
练习册系列答案
相关题目
9.下列叙述中正确的是( )
| A. | 若a,b,c∈R,则“ax2+bx+c≥0”的充分条件是“b2-4ac≤0” | |
| B. | 若a,b,c∈R,则“ab2>cb2”的充要条件是“a>c” | |
| C. | l是一条直线,α,β是两个不同的平面,若l⊥α,l⊥β,则α∥β | |
| D. | 命题“对任意x∈R,有x2≥0”的否定是“存在x∈R,有x2≥0” |
6.二项式(x+$\frac{2}{{x}^{3}}$)8展开式的常数项等于( )
| A. | C${\;}_{8}^{4}$ | B. | C${\;}_{8}^{2}$ | C. | 24C${\;}_{8}^{4}$ | D. | 22C${\;}_{8}^{2}$ |
3.已知抛物线C:y2=2px(p>0)的焦点为F,准线为l,点P是抛物线C上一点,过P作PM⊥l,垂足为M,记$N({\frac{7p}{2},0}),PF$与MN交于点T,若|NF|=2|PF|,且△PNT的面积为$3\sqrt{2}$,则p=( )
| A. | $\sqrt{3}$ | B. | 2 | C. | $\sqrt{5}$ | D. | $\sqrt{6}$ |