ÌâÄ¿ÄÚÈÝ
ÒÑÖªº¯Êýf(x)=
£¬g(x)=asin(
x+
)-2a+2(a£¾0)£¬¸ø³öÏÂÁнáÂÛ£º
¢Ùº¯Êýf£¨x£©µÄÖµÓòΪ[0£¬
]£»
¢Úº¯Êýg£¨x£©ÔÚ[0£¬1]ÉÏÊÇÔöº¯Êý£»
¢Û¶ÔÈÎÒâa£¾0£¬·½³Ìf£¨x£©=g£¨x£©ÔÚ[0£¬1]ÄÚºãÓн⣻
¢ÜÈô´æÔÚx1£¬x2¡Ê[0£¬1]£¬Ê¹µÃf£¨x1£©=g£¨x2£©³ÉÁ¢£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ
¡Üa¡Ü
£®
ÆäÖÐËùÓÐÕýÈ·½áÂÛµÄÐòºÅÊÇ £®
|
| ¦Ð |
| 3 |
| 3¦Ð |
| 2 |
¢Ùº¯Êýf£¨x£©µÄÖµÓòΪ[0£¬
| 1 |
| 3 |
¢Úº¯Êýg£¨x£©ÔÚ[0£¬1]ÉÏÊÇÔöº¯Êý£»
¢Û¶ÔÈÎÒâa£¾0£¬·½³Ìf£¨x£©=g£¨x£©ÔÚ[0£¬1]ÄÚºãÓн⣻
¢ÜÈô´æÔÚx1£¬x2¡Ê[0£¬1]£¬Ê¹µÃf£¨x1£©=g£¨x2£©³ÉÁ¢£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ
| 5 |
| 9 |
| 4 |
| 5 |
ÆäÖÐËùÓÐÕýÈ·½áÂÛµÄÐòºÅÊÇ
¿¼µã£ºÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦ÓÃ
רÌ⣺º¯ÊýµÄÐÔÖʼ°Ó¦ÓÃ
·ÖÎö£º¢Ùµ±x¡Ê(
£¬1]ʱ£¬ÀûÓÃf£¨x£©=
=1-
µ¥µ÷µÝÔö£¬¿ÉµÃf(
)£¼f(x)¡Üf(1)£®
µ±x¡Ê[0£¬
]ʱ£¬º¯Êýf£¨x£©=-
x+
£¬ÀûÓÃÒ»´Îº¯ÊýµÄµ¥µ÷ÐԿɵÃf(
)¡Üf(x)¡Üf(0)£®
¼´¿ÉµÃµ½º¯Êýf£¨x£©µÄÖµÓò£®
¢ÚÀûÓÃÓÕµ¼¹«Ê½¿ÉµÃg£¨x£©=-acos
x-2a+2£¬ÀûÓÃÓàÏÒº¯ÊýµÄµ¥µ÷ÐÔ£¬½ø¶øµÃ³ög£¨x£©ÔÚ[0£¬1]Éϵ¥µ÷ÐÔ£®
¢ÛÓÉ¢Ú¿ÉÖª£ºg£¨0£©¡Üg£¨x£©¡Üg£¨1£©£¬ÈôÈÎÒâa£¾0£¬·½³Ìf£¨x£©=g£¨x£©ÔÚ[0£¬1]ÄÚºãÓн⣬
Ôò±ØÐëÂú×ãf£¨x£©µÄÖµÓò[0£¬
]⊆{g£¨x£©|x¡Ê[0£¬1]}£®½â³öÅж¨¼´¿É£®
¢Ü´æÔÚx1£¬x2¡Ê[0£¬1]£¬Ê¹µÃf£¨x1£©=g£¨x2£©³ÉÁ¢£¬Ôò
½â³ö¼´¿É£®
| 1 |
| 2 |
| x |
| x+2 |
| 2 |
| x+2 |
| 1 |
| 2 |
µ±x¡Ê[0£¬
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
¼´¿ÉµÃµ½º¯Êýf£¨x£©µÄÖµÓò£®
¢ÚÀûÓÃÓÕµ¼¹«Ê½¿ÉµÃg£¨x£©=-acos
| ¦Ð |
| 3 |
¢ÛÓÉ¢Ú¿ÉÖª£ºg£¨0£©¡Üg£¨x£©¡Üg£¨1£©£¬ÈôÈÎÒâa£¾0£¬·½³Ìf£¨x£©=g£¨x£©ÔÚ[0£¬1]ÄÚºãÓн⣬
Ôò±ØÐëÂú×ãf£¨x£©µÄÖµÓò[0£¬
| 1 |
| 3 |
¢Ü´æÔÚx1£¬x2¡Ê[0£¬1]£¬Ê¹µÃf£¨x1£©=g£¨x2£©³ÉÁ¢£¬Ôò
|
½â´ð£º
½â£º¢Ùµ±x¡Ê(
£¬1]ʱ£¬f£¨x£©=
=1-
µ¥µ÷µÝÔö£¬¡àf(
)£¼f(x)¡Üf(1)£¬¼´
£¼f(x)¡Ü
£®
µ±x¡Ê[0£¬
]ʱ£¬Óɺ¯Êýf£¨x£©=-
x+
µ¥µ÷µÝ¼õ£¬¡àf(
)¡Üf(x)¡Üf(0)£¬¼´0¡Üf(x)¡Ü
£®
¡àº¯Êýf£¨x£©µÄÖµÓòΪ[0£¬
]£®Òò´Ë¢ÙÕýÈ·£®
¢Úg£¨x£©=-acos
x-2a+2£¬¡ßx¡Ê[0£¬1]£¬¡à0¡Ü
¡Ü
£¬Òò´Ëcos
ÔÚ[0£¬1]Éϵ¥µ÷µÝ¼õ£¬
ÓÖa£¾0£¬¡àg£¨x£©ÔÚ[0£¬1]Éϵ¥µ÷µÝÔö£¬Òò´ËÕýÈ·£®
¢ÛÓÉ¢Ú¿ÉÖª£ºg£¨0£©¡Üg£¨x£©¡Üg£¨1£©£¬¡à-3a+2¡Üg(x)¡Ü-
a+2£®
ÈôÈÎÒâa£¾0£¬·½³Ìf£¨x£©=g£¨x£©ÔÚ[0£¬1]ÄÚºãÓн⣬
Ôò±ØÐëÂú×ãf£¨x£©µÄÖµÓò[0£¬
]⊆{g£¨x£©|x¡Ê[0£¬1]}£®
¡à-3a+2¡Ü0£¬-
a+2¡Ý
£¬½âµÃa=
£¬Òò´Ë¢Û²»ÕýÈ·£»
¢Ü´æÔÚx1£¬x2¡Ê[0£¬1]£¬Ê¹µÃf£¨x1£©=g£¨x2£©³ÉÁ¢£¬Ôò
ÓÉ¢Û¿ÉÖª£ºg(x)max=g(1)=-
a+2£¬g£¨x£©min=g£¨0£©=-3a+2£¬
¡à-3a+2¡Ü
£¬-
a+2¡Ý0£¬½âµÃ
¡Üa¡Ü
£¬
¡àʵÊýaµÄȡֵ·¶Î§ÊÇ
¡Üa¡Ü
£®ÕýÈ·£®
×ÛÉÏ¿ÉÖª£ºÖ»ÓТ٢ڢÜÕýÈ·£®
¹Ê´ð°¸Îª£º¢Ù¢Ú¢Ü£®
| 1 |
| 2 |
| x |
| x+2 |
| 2 |
| x+2 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 3 |
µ±x¡Ê[0£¬
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
¡àº¯Êýf£¨x£©µÄÖµÓòΪ[0£¬
| 1 |
| 3 |
¢Úg£¨x£©=-acos
| ¦Ð |
| 3 |
| ¦Ðx |
| 3 |
| ¦Ð |
| 3 |
| ¦Ðx |
| 3 |
ÓÖa£¾0£¬¡àg£¨x£©ÔÚ[0£¬1]Éϵ¥µ÷µÝÔö£¬Òò´ËÕýÈ·£®
¢ÛÓÉ¢Ú¿ÉÖª£ºg£¨0£©¡Üg£¨x£©¡Üg£¨1£©£¬¡à-3a+2¡Üg(x)¡Ü-
| 5 |
| 2 |
ÈôÈÎÒâa£¾0£¬·½³Ìf£¨x£©=g£¨x£©ÔÚ[0£¬1]ÄÚºãÓн⣬
Ôò±ØÐëÂú×ãf£¨x£©µÄÖµÓò[0£¬
| 1 |
| 3 |
¡à-3a+2¡Ü0£¬-
| 5 |
| 2 |
| 1 |
| 3 |
| 2 |
| 3 |
¢Ü´æÔÚx1£¬x2¡Ê[0£¬1]£¬Ê¹µÃf£¨x1£©=g£¨x2£©³ÉÁ¢£¬Ôò
|
ÓÉ¢Û¿ÉÖª£ºg(x)max=g(1)=-
| 5 |
| 2 |
¡à-3a+2¡Ü
| 1 |
| 3 |
| 5 |
| 2 |
| 5 |
| 9 |
| 4 |
| 5 |
¡àʵÊýaµÄȡֵ·¶Î§ÊÇ
| 5 |
| 9 |
| 4 |
| 5 |
×ÛÉÏ¿ÉÖª£ºÖ»ÓТ٢ڢÜÕýÈ·£®
¹Ê´ð°¸Îª£º¢Ù¢Ú¢Ü£®
µãÆÀ£º±¾Ìâ×ۺϿ¼²éÁ˷ֶκ¯ÊýµÄµ¥µ÷ÐÔ¡¢ºã³ÉÁ¢ÎÊÌâµÄµÈ¼Ûת»¯·½·¨µÈ»ù´¡ÖªÊ¶Óë»ù±¾¼¼ÄÜ·½·¨£¬¿¼²éÁË·ÖÎöÎÊÌâºÍ½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÉèF1£¬F2ΪÍÖÔ²¦££º
+
=1£¨a£¾b£¾0£©µÄ×ó£¬ÓÒ½¹µã£¬µãMÔÚÍÖÔ²¦£ÉÏ£®Èô¡÷MF1F2Ϊֱ½ÇÈý½ÇÐΣ¬ÇÒ|MF1|=2|MF2|£¬ÔòÍÖÔ²¦£µÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
| x2 |
| a2 |
| y2 |
| b2 |
A¡¢
| ||||||||
B¡¢
| ||||||||
C¡¢
| ||||||||
D¡¢
|