题目内容
已知cos(θ+
)=-
,θ∈(0,
),则sin(2θ-
)= .
| π |
| 4 |
| ||
| 10 |
| π |
| 2 |
| π |
| 3 |
考点:两角和与差的正弦函数
专题:三角函数的求值
分析:由题意可得θ+
∈(
,
),sin(θ+
)=
,再利用诱导公式、二倍角公式求得sin2θ=-cos(2θ+
)的值、cos2θ=sin2(θ+
)的值,从而求得sin(2θ-
)=sin2θcos
-cos2θsin
的值.
| π |
| 4 |
| π |
| 4 |
| 3π |
| 4 |
| π |
| 4 |
3
| ||
| 10 |
| π |
| 2 |
| π |
| 4 |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
解答:
解:∵cos(θ+
)=-
,θ∈(0,
),
∴θ+
∈(
,
),sin(θ+
)=
,
∴sin2θ=-cos(2θ+
)=1-2cos2(θ+
)=
,
cos2θ=sin2(θ+
)=2sin(θ+
)cos(θ+
)=-
,
sin(2θ-
)=sin2θcos
-cos2θsin
=
+
=
,
故答案为:
.
| π |
| 4 |
| ||
| 10 |
| π |
| 2 |
∴θ+
| π |
| 4 |
| π |
| 4 |
| 3π |
| 4 |
| π |
| 4 |
3
| ||
| 10 |
∴sin2θ=-cos(2θ+
| π |
| 2 |
| π |
| 4 |
| 4 |
| 5 |
cos2θ=sin2(θ+
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| 3 |
| 5 |
sin(2θ-
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| 2 |
| 5 |
3
| ||
| 10 |
4+3
| ||
| 10 |
故答案为:
4+3
| ||
| 10 |
点评:本题主要考查两角和差的三角公式、二倍角公式、诱导公式的应用,属于中档题.
练习册系列答案
相关题目