ÌâÄ¿ÄÚÈÝ
17£®ÈôÍÖÔ²C1£º$\frac{{x}^{2}}{{{a}_{1}}^{2}}$+$\frac{{y}^{2}}{{{b}_{1}}^{2}}$=1£¨a1£¾b1£¾0£©ºÍÍÖÔ²C2£º$\frac{{x}^{2}}{{{a}_{2}}^{2}}$+$\frac{{y}^{2}}{{{b}_{2}}^{2}}$=1£¨a2£¾b2£¾0£©µÄ½¹µãÏàͬ£¬ÇÒa1£¾a2£¬ÔòÏÂÃæ½áÂÛÕýÈ·µÄÊÇ£¨¡¡¡¡£©¢ÙÍÖÔ²C1ºÍÍÖÔ²C2Ò»¶¨Ã»Óй«¹²µã ¢Úa12-a22=b12-b22
¢Û$\frac{{a}_{1}}{{a}_{2}}$£¾$\frac{{b}_{1}}{{b}_{2}}$ ¢Üa1-a2£¼b1-b2£®
| A£® | ¢Ú¢Û¢Ü | B£® | ¢Ù¢Û¢Ü | C£® | ¢Ù¢Ú¢Ü | D£® | ¢Ù¢Ú¢Û |
·ÖÎö ÀûÓÃÁ½ÍÖÔ²ÓÐÏàͬ½¹µã£¬¿ÉÖªa12-a22=b12-b22£¬ÓÉ´Ë¿ÉÅжϢ٢ÚÕýÈ·£»ÀûÓÃa1£¾b1£¾0£¬a2£¾b2£¾0¿ÉÅжϢÜÕýÈ·
½â´ð ½â£ºÓÉÌâÒ⣬a12-b12=a22-b22£¬¡ßa1£¾a2£¬¡àb1£¾b2£¬¡à¢Ù¢ÚÕýÈ·£¬¢Ü²»ÕýÈ·£»
ÓÖa12-a22=b12-b22£¬a1£¾b1£¾0£¬a2£¾b2£¾0£¬¡à¢ÜÕýÈ·£¬
¹ÊÑ¡£ºC£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÍÖÔ²µÄ¼¸ºÎÐÔÖÊ£¬µÈ¼Ûת»¯Êǹؼü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
8£®ÒÑÖªµãOÔÚ¶þÃæ½Ç¦Á-AB-¦ÂµÄÀâÉÏ£¬µãPÔÚ¦ÁÄÚ£¬ÇÒ¡ÏPOB=60¡ã£®Èô¶ÔÓÚ¦ÂÄÚÒìÓÚOµÄÈÎÒâÒ»µãQ£¬¶¼ÓСÏPOQ¡Ý60¡ã£¬Ôò¶þÃæ½Ç¦Á-AB-¦ÂµÄ´óСÊÇ£¨¡¡¡¡£©
| A£® | 30¡ã | B£® | 45¡ã | C£® | 60¡ã | D£® | 90¡ã |
12£®Éè m¡¢nÊÇÁ½Ìõ²»Í¬µÄÖ±Ïߣ¬¦ÁÊÇÒ»¸öÆ½Ãæ£¬ÔòÏÂÁÐÃüÌâÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | Èôm¡În£¬n?¦Á£¬Ôòm¡Î¦Á | B£® | Èôm¡Î¦Á£¬n?¦Á£¬Ôòm¡În | C£® | Èôm¡Ín£¬n?¦Á£¬Ôòm¡Í¦Á | D£® | Èôm¡Í¦Á£¬m¡În£¬Ôòn¡Í¦Á |
2£®a¡¢bΪ·ÇÁãʵÊý£¬ÇÒa£¼b£¬ÔòÏÂÁÐÃüÌâ³ÉÁ¢µÄÊÇ£¨¡¡¡¡£©
| A£® | a2£¼b2 | B£® | $\frac{1}{{a{b^2}}}$£¼$\frac{1}{{{a^2}b}}$ | C£® | a2b£¼ab2 | D£® | $\frac{b}{a}$£¼$\frac{a}{b}$ |