ÌâÄ¿ÄÚÈÝ
4£®ÒÑÖªÊýÁÐ{an}£¬{bn}Âú×ã2Sn=£¨an+2£©bn£¬ÆäÖÐSnÊÇÊýÁÐ{an}µÄǰnÏîºÍ£®£¨1£©ÈôÊýÁÐ{an}ÊÇÊ×ÏîΪ$\frac{2}{3}$£¬¹«±ÈΪ$-\frac{1}{3}$µÄµÈ±ÈÊýÁУ¬ÇóÊýÁÐ{bn}µÄͨÏʽ£»
£¨2£©Èôbn=n£¬a2=3£¬ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬Éè${c_n}=\frac{a_n}{b_n}$£¬ÇóÖ¤£ºÊýÁÐ{cn}ÖеÄÈÎÒâÒ»Ïî×Ü¿ÉÒÔ±íʾ³É¸ÃÊýÁÐÆäËûÁ½ÏîÖ®»ý£®
·ÖÎö £¨1£©ÀûÓõȱÈÊýÁеÄͨÏʽ¼°ÆäǰnÏîºÍ¹«Ê½¼´¿ÉµÃ³ö£®
£¨2£©ÀûÓõȲîÊýÁеÄͨÏʽ¡¢µÝÍÆ¹ØÏµ¼´¿ÉµÃ³ö£»
£¨3£©ÓÉ£¨2£©µÃ${c_n}=\frac{n+1}{n}$£¬¶ÔÓÚ¸ø¶¨µÄn¡ÊN*£¬Èô´æÔÚk£¬t¡Ùn£¬k£¬t¡ÊN*£¬Ê¹µÃcn=ck•ct£¬Ö»Ðè$\frac{n+1}{n}=\frac{k+1}{k}•\frac{t+1}{t}$£¬¼´¿ÉÖ¤Ã÷£®
½â´ð ½â£º£¨1£©¡ß${a_n}=\frac{2}{3}{£¨-\frac{1}{3}£©^{n-1}}=-2{£¨-\frac{1}{3}£©^n}$£¬Sn=$\frac{\frac{2}{3}[1-£¨-\frac{1}{3}£©^{n}]}{1-£¨-\frac{1}{3}£©}$=$\frac{1}{2}[1-£¨-\frac{1}{3}£©^{n}]$£®¡£¨2·Ö£©
¡à${b_n}=\frac{{2{S_n}}}{{{a_n}+2}}=\frac{{1-{{£¨-\frac{1}{3}£©}^n}}}{{-2{{£¨-\frac{1}{3}£©}^n}+2}}=\frac{1}{2}$£®¡£¨4·Ö£©
£¨2£©Èôbn=n£¬Ôò2Sn=nan+2n£¬¡à2Sn+1=£¨n+1£©an+1+2£¬
Á½Ê½Ïà¼õµÃ2an+1=£¨n+1£©an+1-nan+2£¬¼´nan=£¨n-1£©an+1+2£¬
µ±n¡Ý2ʱ£¬£¨n-1£©an-1=£¨n-2£©an+2£¬
Á½Ê½Ïà¼õµÃ£¨n-1£©an-1+£¨n-1£©an+1=2£¨n-1£©an£¬¼´an-1+an+1=2an£¬¡£¨8·Ö£©
ÓÖÓÉ2S1=a1+2£¬2S2=2a2+4µÃa1=2£¬a2=3£¬
ËùÒÔÊýÁÐ{an}ÊÇÊ×ÏîΪ2£¬¹«²îΪ3-2=1µÄµÈ²îÊýÁУ¬
¹ÊÊýÁÐ{an}µÄͨÏʽÊÇan=n+1£®¡£¨10·Ö£©
£¨3£©Ö¤Ã÷£ºÓÉ£¨2£©µÃ${c_n}=\frac{n+1}{n}$£¬
¶ÔÓÚ¸ø¶¨µÄn¡ÊN*£¬Èô´æÔÚk£¬t¡Ùn£¬k£¬t¡ÊN*£¬Ê¹µÃcn=ck•ct£¬
Ö»Ðè$\frac{n+1}{n}=\frac{k+1}{k}•\frac{t+1}{t}$£¬
¼´$1+\frac{1}{n}=£¨1+\frac{1}{k}£©•£¨1+\frac{1}{t}£©$£¬¼´$\frac{1}{n}=\frac{1}{k}+\frac{1}{t}+\frac{1}{kt}$£¬Ôò$t=\frac{n£¨k+1£©}{k-n}$£¬¡£¨12·Ö£©
È¡k=n+1£¬Ôòt=n£¨n+2£©£¬
¡à¶ÔÊýÁÐ{cn}ÖеÄÈÎÒâÒ»Ïî${c_n}=\frac{n+1}{n}$£¬¶¼´æÔÚ${c_{n+1}}=\frac{n+2}{n+1}$ºÍ${c_{{n^2}+2n}}=\frac{{{n^2}+2n+1}}{{{n^2}+2n}}$ʹµÃ${c_n}={c_{n+1}}•{c_{{n^2}+2n}}$£® ¡£¨16·Ö£©
µãÆÀ ±¾Ì⿼²éÁ˵ÝÍÆ¹ØÏµ¡¢µÈ±ÈÊýÁеÄͨÏʽ¼°ÆäǰnÏîºÍ¹«Ê½£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮