题目内容

4.已知$\overrightarrow{e_1}$和$\overrightarrow{e_2}$是两个单位向量,夹角为$\frac{π}{3}$,则($\overrightarrow{e_1}-\overrightarrow{e_2}$)$•(-3\overrightarrow{e_1}+2\overrightarrow{e_2})$等于(  )
A.-8B.$\frac{9}{2}$C.$-\frac{5}{2}$D.8

分析 据条件可得到,${\overrightarrow{{e}_{1}}}^{2}=1,{\overrightarrow{{e}_{2}}}^{2}=1,\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}=\frac{1}{2}$,然后进行数量积的运算即可.

解答 解:根据条件,
${\overrightarrow{{e}_{1}}}^{2}={\overrightarrow{{e}_{2}}}^{2}=1$,$\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}=\frac{1}{2}$;
∴$(\overrightarrow{{e}_{1}}-\overrightarrow{{e}_{2}})•(-3\overrightarrow{{e}_{1}}+2\overrightarrow{{e}_{2}})$
=$-3{\overrightarrow{{e}_{1}}}^{2}+5\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}-2{\overrightarrow{{e}_{2}}}^{2}$
=$-3+\frac{5}{2}-2$
=$-\frac{5}{2}$.
故选C.

点评 考查单位向量的概念,向量数量积的运算及计算公式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网