题目内容
16.把函数$y=sin(4x+\frac{π}{6})$图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将图象向右平移$\frac{π}{3}$个单位,那么所得图象的一条对称轴方程为( )| A. | $x=-\frac{π}{2}$ | B. | $x=-\frac{π}{4}$ | C. | $x=\frac{π}{4}$ | D. | $x=\frac{π}{8}$ |
分析 利用诱导公式、函数y=Asin(ωx+φ)的图象变换规律,求得变换后所得函数的解析式,再利用余弦函数的图象的对称性,求得得图象的一条对称轴方程.
解答 解:把函数$y=sin(4x+\frac{π}{6})$图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得y=sin(2x+$\frac{π}{6}$)的图象,
再将图象向右平移$\frac{π}{3}$个单位,可得得y=sin(2x-$\frac{2π}{3}$+$\frac{π}{6}$)=-cos2x 的图象.
令2x=kπ,可得x=$\frac{kπ}{2}$,k∈Z,令k=-1,可得所得图象的一条对称轴方程为x=-$\frac{π}{2}$,
故选:A.
点评 本题主要考查诱导公式、函数y=Asin(ωx+φ)的图象变换规律,余弦函数的图象的对称性,属于基础题.
练习册系列答案
相关题目
6.若角α,β满足-$\frac{π}{2}$<α<0<β<$\frac{π}{3}$,则α-β的取值范围是( )
| A. | $(-\frac{π}{2},\;-\frac{π}{3})$ | B. | $(-\frac{5π}{6},\;0)$ | C. | $(-\frac{π}{2},\;\frac{π}{3})$ | D. | $(-\frac{π}{6},\;0)$ |
4.袋子中装有大小完全相同的6个红球和4个黑球,从中任取2个球,则所取出的两个球中恰有1个红球的概率为( )
| A. | $\frac{4}{15}$ | B. | $\frac{12}{25}$ | C. | $\frac{8}{15}$ | D. | $\frac{3}{5}$ |
11.若函数exf(x)(e=2.71828…,是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质,下列函数中具有M性质的是( )
| A. | f(x)=x2 | B. | f(x)=2x | C. | f(x)=3-x | D. | f(x)=cosx |