题目内容
(1)a
a
a
= ;
(2)a
a
÷a
= ;
(3)(x
y -
)12= ;
(4)(
+
)2014(
-
)2014= ;
(5)64 -
= ;
(6)(2a-3b -
)(-3a-1b)÷(4a-4b -
)= ;
(7)0.027 -
-(-
)-2+(2
)
-(
-1)0= .
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 6 |
(2)a
| 2 |
| 3 |
| 3 |
| 4 |
| 5 |
| 6 |
(3)(x
| 1 |
| 4 |
| 2 |
| 3 |
(4)(
| 3 |
| 2 |
| 3 |
| 2 |
(5)64 -
| 2 |
| 3 |
(6)(2a-3b -
| 2 |
| 3 |
| 5 |
| 3 |
(7)0.027 -
| 1 |
| 3 |
| 1 |
| 7 |
| 7 |
| 9 |
| 1 |
| 2 |
| 2 |
考点:根式与分数指数幂的互化及其化简运算
专题:函数的性质及应用
分析:根据指数幂的运算法则即可得到结论.
解答:
解:(1)a
a
a
=a
+
+
=a;
(2)a
a
÷a
=a
+
-
=a
;
(3)(x
y -
)12=x
×12y-
×12=x3•y-8;
(4)(
+
)2014(
-
)2014=[(
+
)(
-
)]2014=1;
(5)64 -
=43×(-
)=4-2=
;
(6)(2a-3b -
)(-3a-1b)÷(4a-4b -
)=-
a-3-1+4•b-
+1+
=-
•b2;
(7)0.027 -
-(-
)-2+(2
)
-(
-1)0=(
)-
×3-49+
-1=
-49+
-1=5-50=-45.
故答案为:(1)a(2)a
(3)x3•y-8 (4)1 (5)
(6)-
•b2 (7)-45
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 6 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 6 |
(2)a
| 2 |
| 3 |
| 3 |
| 4 |
| 5 |
| 6 |
| 2 |
| 3 |
| 3 |
| 4 |
| 5 |
| 6 |
| 7 |
| 12 |
(3)(x
| 1 |
| 4 |
| 2 |
| 3 |
| 1 |
| 4 |
| 2 |
| 3 |
(4)(
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
(5)64 -
| 2 |
| 3 |
| 2 |
| 3 |
| 1 |
| 16 |
(6)(2a-3b -
| 2 |
| 3 |
| 5 |
| 3 |
| 3 |
| 2 |
| 2 |
| 3 |
| 5 |
| 3 |
| 3 |
| 2 |
(7)0.027 -
| 1 |
| 3 |
| 1 |
| 7 |
| 7 |
| 9 |
| 1 |
| 2 |
| 2 |
| 3 |
| 10 |
| 1 |
| 3 |
|
| 10 |
| 3 |
| 5 |
| 3 |
故答案为:(1)a(2)a
| 7 |
| 12 |
| 1 |
| 8 |
| 3 |
| 2 |
点评:本题主要考查分式指数幂的基本运算,要求熟练掌握指数幂的运算法则.
练习册系列答案
相关题目
函数f(x)=x2-2(a-1)x+2在区间(-∞,4]上是减函数,则实数a的取值范围( )
| A、(-∞,4] |
| B、(-∞,5] |
| C、[5,+∞) |
| D、[4,5] |