题目内容
已知数列{4n-2n}(n∈N*)的前n项和为Sn,bn=
,则数列{bn}的前n项和Tn= .
| 2n |
| Sn |
考点:数列的求和
专题:计算题,等差数列与等比数列
分析:首先运用分组求和,运用等比数列的求和公式求得Sn,再运用裂项相消求和,即可得到数列{bn}的前n项和Tn.
解答:
解:Sn=(4-2)+(42-22)+…+(4n-2n)
=(4+42+…+4n)-(2+22+…+2n)
=
-
=
(2•4n-3•2n+1),
则bn=
=
•
=
•
=
(
-
),
则有Tn=
(1-
+
-
+
-
+…+
-
)
=
(1-
).
故答案为:
(1-
)
=(4+42+…+4n)-(2+22+…+2n)
=
| 4(1-4n) |
| 1-4 |
| 2(1-2n) |
| 1-2 |
| 2 |
| 3 |
则bn=
| 2n |
| Sn |
| 3 |
| 2 |
| 2n |
| 2•4n-3•2n+1 |
| 3 |
| 2 |
| 2n |
| (2n-1)(2n+1-1) |
=
| 3 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1-1 |
则有Tn=
| 3 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 7 |
| 1 |
| 7 |
| 1 |
| 15 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1-1 |
=
| 3 |
| 2 |
| 1 |
| 2n+1-1 |
故答案为:
| 3 |
| 2 |
| 1 |
| 2n+1-1 |
点评:本题考查等比数列的求和公式,考查数列的求和方法:分组求和和裂项相消求和,考查运算能力,属于中档题.
练习册系列答案
相关题目