题目内容
19.已知平面内两点A(0,-a),B(0,a)(a>0),有一动点P在平面内,且直线PA与直线PB的斜率分别为k1,k2,令k1•k2=m,其中m≠0.(Ⅰ)求点P的轨迹方程;
(Ⅱ)已知N点在圆x2+y2=a2上,设m∈(-1,0)时对应的曲线为C,设F1,F2是该曲线的两个焦点,试问是否存在点N,使△F1NF2的面积S=$\sqrt{-m}$•a2.
分析 (Ⅰ)利用直接法,求点P的轨迹方程;
(Ⅱ)假设存在,得出矛盾,即可得出结论.
解答 解:(Ⅰ)设动点为P,其坐标为(x,y),
由条件可得$\frac{y+a}{x}•\frac{y-a}{x}$=m,
即y2-mx2=a2(x≠0),
(Ⅱ)F1(0,$\sqrt{{a}^{2}+\frac{{a}^{2}}{m}}$),F2(0,$\sqrt{{a}^{2}+\frac{{a}^{2}}{m}}$),N(x0,y0),
∵△F1NF2的面积S=$\sqrt{-m}$•a2,
∴$\frac{1}{2}•2$$\sqrt{{a}^{2}+\frac{{a}^{2}}{m}}$|x0|=$\sqrt{-m}$•a2,
∵0<|x0|≤a,
∴可得0<$\frac{\sqrt{-m}}{\sqrt{1+\frac{1}{m}}}$≤1,
∴m2+m+1≤0,
∵△<0,∴不等式不成立,
∴不存在点N,使△F1NF2的面积S=$\sqrt{-m}$•a2.
点评 考查曲线与方程、圆锥曲线等基础知识,同时考查推理运算的能力,考查了同学们观察、推理以及创造性地分析问题、解决问题的能力.
练习册系列答案
相关题目
10.过抛物线y2=6x的焦点F的直线l交抛物线于A,B两点,若$\overrightarrow{AF}$=3$\overrightarrow{FB}$,则线段AB的中点M到y轴的距离为( )
| A. | 5 | B. | 4 | C. | 3 | D. | $\frac{5}{2}$ |
7.已知定义在R上的偶函数f(x),其导函数为f′(x);当x≥0时,恒有$\frac{x}{2}$f′(x)+f(-x)≤0,若g(x)=x2f(x),则不等式g(x)<g(1-2x)的解集为( )
| A. | ($\frac{1}{3}$,1) | B. | (-∞,$\frac{1}{3}$)∪(1,+∞) | C. | ($\frac{1}{3}$,+∞) | D. | (-∞,$\frac{1}{3}$) |
4.方程(x+y-3)$\sqrt{{y}^{2}-4x}$=0表示的曲线是( )
| A. | 两条射线 | B. | 抛物线和一条线段 | ||
| C. | 抛物线和一条直线 | D. | 抛物线和两条射线 |
8.已知AB⊥AC,AB=AC,点M满足$\overrightarrow{AM}=t\overrightarrow{AB}+({1-t})\overrightarrow{AC}$,若$∠BAM=\frac{π}{3}$,则t的值为( )
| A. | $\sqrt{3}-\sqrt{2}$ | B. | $\sqrt{2}-1$ | C. | $\frac{{\sqrt{3}-1}}{2}$ | D. | $\frac{{\sqrt{3}+1}}{2}$ |
9.已知实数x,y满足$\left\{\begin{array}{l}x+y≥1\\ mx-y≤0\\ 2x-y+2≥0\end{array}\right.$,若z=3x-y的最大值为1,则m的值为( )
| A. | $\frac{8}{3}$ | B. | 2 | C. | 1 | D. | $\frac{2}{3}$ |