题目内容

13.平行四边形ABCD中,AB=3,AD=2,∠BAD=120°,P是平行四边形ABCD内一点,且AP=1,若$\overrightarrow{AP}=x\overrightarrow{AB}+y\overrightarrow{AD}$,则3x+2y的最大值为2.

分析 根据$\overrightarrow{AP}=x\overrightarrow{AB}+y\overrightarrow{AD}$,得出${\overrightarrow{AP}}^{2}$=1,利用基本不等式得出3x+2y的最大值.

解答 解:∵$\overrightarrow{AP}=x\overrightarrow{AB}+y\overrightarrow{AD}$,
∴${\overrightarrow{AP}}^{2}$=${(x\overrightarrow{AB}+y\overrightarrow{AD})}^{2}$=9x2+4y2+2xy×3×2×(-$\frac{1}{2}$)
=(3x+2y)2-3•3x•2y≥(3x+2y)2-$\frac{3}{4}$×(3x+2y)2
=$\frac{1}{4}$×(3x+2y)2
又${|\overrightarrow{AP}|}^{2}$=1,
即$\frac{1}{4}$×(3x+2y)2≤1,
所以3x+2y≤2,当且仅当3x=2y,
即x=$\frac{1}{3}$,y=$\frac{1}{2}$时,
3x+2y取得最大值2.
故答案为:2.

点评 本题考查了平面向量的数量积与模长的应用问题,也考查了基本不等式的应用问题,是基础题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网