题目内容

12.若实数x,y满足约束条件$\left\{\begin{array}{l}2x-y-2≤0\\ 2x+y-4≥0\\ y≤2\end{array}\right.$则$\frac{y}{x}$的取值范围是  (  )
A.$[{\frac{2}{3},2}]$B.$[{\frac{1}{2},\frac{3}{2}}]$C.$[{\frac{3}{2},2}]$D.[1,2]

分析 由约束条件作出可行域,再由$\frac{y}{x}$的几何意义,即可行域内的动点与原点连线的斜率求解.

解答 解:由约束条件$\left\{\begin{array}{l}2x-y-2≤0\\ 2x+y-4≥0\\ y≤2\end{array}\right.$作出可行域如图,

联立$\left\{\begin{array}{l}{2x-y-2=0}\\{2x+y-4=0}\end{array}\right.$,解得A($\frac{3}{2},1$),
联立$\left\{\begin{array}{l}{y=2}\\{2x+y-4=0}\end{array}\right.$,解得B(1,2),
由${k}_{OA}=\frac{2}{3},{k}_{OB}=2$,得$\frac{y}{x}$的取值范围是[$\frac{2}{3},2$].
故选:A.

点评 本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网