ÌâÄ¿ÄÚÈÝ
17£®ÒÔÏÂËĸöÃüÌâÖУ¬ÆäÖÐÕæÃüÌâµÄ¸öÊýΪ£¨¡¡¡¡£©¢ÙÔڻعé·ÖÎöÖУ¬¿ÉÓÃÏà¹ØÖ¸ÊýR2µÄÖµÅжÏÄ£Ð͵ÄÄâºÏЧ¹û£¬R2Ô½´ó£¬Ä£ÄâµÄÄâºÏЧ¹ûÔ½ºÃ£»
¢ÚÁ½¸öËæ»ú±äÁ¿µÄÏßÐÔÏà¹ØÐÔԽǿ£¬Ïà¹ØÏµÊýÔ½½Ó½üÓÚ1£»
¢ÛÈôÊý¾Ýx1£¬x2£¬x3¡£¬xnµÄ·½²îΪ1£¬Ôò3x1£¬3x2£¬3x3¡£¬3xnµÄ·½²îΪ3£»
¢Ü¶Ô·ÖÀà±äÁ¿xÓëyµÄËæ»ú±äÁ¿µÄ¹Û²âÖµk2À´Ëµ£¬kԽС£¬Åжϡ°xÓëyÓйØÏµ¡±µÄ°ÑÎճ̶ÈÔ½´ó£®
| A£® | 1 | B£® | 2 | C£® | 3 | D£® | 4 |
·ÖÎö £¨1£©¸ù¾ÝÏà¹ØÖ¸ÊýR2µÄÖµµÄÐÔÖʽøÐÐÅжϣ¬
£¨2£©¸ù¾ÝÏßÐÔÏà¹ØÐÔÓërµÄ¹ØÏµ½øÐÐÅжϣ¬
£¨3£©¸ù¾Ý·½²î¹ØÏµ½øÐÐÅжϣ¬
£¨4£©¸ù¾Ý·ÖÀà±äÁ¿xÓëyµÄËæ»ú±äÁ¿k2µÄ¹Û²ìÖµµÄ¹ØÏµ½øÐÐÅжϣ®
½â´ð ½â£º£¨1£©ÓÃÏà¹ØÖ¸ÊýR2µÄÖµÅжÏÄ£Ð͵ÄÄâºÏЧ¹û£¬R2Ô½´ó£¬Ä£Ð͵ÄÄâºÏЧ¹ûÔ½ºÃ£¬¹Ê£¨1£©ÕýÈ·£»
£¨2£©ÈôÁ½¸öËæ»ú±äÁ¿µÄÏßÐÔÏà¹ØÐÔԽǿ£¬ÔòÏà¹ØÏµÊýrµÄ¾ø¶ÔÖµÔ½½Ó½üÓÚ1£¬¹Ê£¨2£©´íÎó£»
£¨3£©Èôͳ¼ÆÊý¾Ýx1£¬x2£¬x3£¬¡£¬xnµÄ·½²îΪ1£¬Ôò3x1£¬3x2£¬3x3¡£¬3xnµÄ·½²îΪ9£¬¹Ê£¨3£©´íÎó£»
£¨4£©¶Ô·ÖÀà±äÁ¿xÓëyµÄËæ»ú±äÁ¿k2µÄ¹Û²ìÖµk2À´Ëµ£¬kԽС£¬Åжϡ°xÓëyÓйØÏµ¡±µÄ°ÑÎճ̶ÈÔ½´ó£®´íÎó£»
¹ÊÑ¡£ºA£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÃüÌâµÄÕæ¼ÙÅжϣ¬Éæ¼°¸ÅÂÊͳ¼ÆÖÐËæ»ú±äÁ¿µÄ¹ØÏµ¼°Ëæ»ú±äÁ¿µÄÏà¹ØÐÔÑо¿»Ø¹éÖ±Ïß·½³ÌµÄ¸ÅÄ¿¼²éÁËÍÆÀíÄÜÁ¦£¬ÊôÓÚ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
7£®ÏÂÁм¸ÖÖÍÆÀí¹ý³ÌÊÇÑÝÒïÍÆÀíµÄÊÇ£¨¡¡¡¡£©
| A£® | 5ºÍln3¿ÉÒԱȽϴóС | |
| B£® | ÓÉÆ½ÃæÈý½ÇÐεÄÐÔÖÊ£¬ÍƲâ¿Õ¼äËÄÃæÌåµÄÐÔÖÊ | |
| C£® | ¶«Éý¸ßÖи߶þÄê¼¶ÓÐ15¸ö°à£¬1°àÓÐ51ÈË£¬2°àÓÐ53ÈË£¬3°àÓÐ52ÈË£¬ÓÉ´ËÍÆ²â¸÷°à¶¼³¬¹ý50ÈË | |
| D£® | Ô¤²â¹ÉƱ×ßÊÆÍ¼ |
8£®ÔËÐÐÈçͼËùʾµÄ³ÌÐò¿òͼ£¬ÔòÊä³öµÄa¡¢b¡¢cÂú×㣨¡¡¡¡£©

| A£® | c¡Üb¡Üa | B£® | a¡Üb¡Üc | C£® | a¡Üc¡Üb | D£® | b¡Üc¡Üa |
12£®ÈôʵÊýx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}2x-y-2¡Ü0\\ 2x+y-4¡Ý0\\ y¡Ü2\end{array}\right.$Ôò$\frac{y}{x}$µÄȡֵ·¶Î§ÊÇ £¨¡¡¡¡£©
| A£® | $[{\frac{2}{3}£¬2}]$ | B£® | $[{\frac{1}{2}£¬\frac{3}{2}}]$ | C£® | $[{\frac{3}{2}£¬2}]$ | D£® | [1£¬2] |
2£®ÈçͼËùʾ£¬Í¼ÖдÖÏß»³öµÄÊÇij¼¸ºÎÌåµÄÈýÊÓͼ£¬¸Ã¼¸ºÎÌåµÄÌå»ýÊÇ£¨¡¡¡¡£©

| A£® | $\frac{2}{3}$ | B£® | $\frac{4}{3}$ | C£® | $\frac{8}{3}$ | D£® | 4 |
7£®2017ÄêijÊпªÕ¹ÁË¡°Ñ°ÕÒÉí±ßµÄºÃÀÏʦ¡±»î¶¯£¬ÊÐÁùÖлý¼«Ðж¯£¬ÈÏÕæÂäʵ£¬Í¨¹ý΢ÐŹØ×¢ÆÀÑ¡¡°Éí±ßµÄºÃÀÏʦ¡±£¬²¢¶ÔÑ¡³öµÄ°àÖ÷Èι¤×÷ÄêÏÞ²»Í¬µÄÎåλ¡°ºÃÀÏʦ¡±µÄ°àÖ÷ÈεŤ×÷ÄêÏ޺ͱ»¹Ø×¢ÊýÁ¿½øÐÐÁËͳ¼Æ£¬µÃµ½ÈçÏÂÊý¾Ý£º
£¨1£©Èô¡±ºÃÀÏʦ¡±µÄ±»¹Ø×¢ÊýÁ¿yÓëÆä°àÖ÷ÈεŤ×÷ÄêÏÞxÂú×ãÏßÐԻع鷽³Ì£¬ÊÔÇ󻨹鷽³Ì$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$£¬²¢¾Í´Ë·ÖÎö£º¡°ºÃÀÏʦ¡±µÄ°àÖ÷Èι¤×÷ÄêÏÞΪ15Äêʱ±»¹Ø×¢µÄÊýÁ¿£»
£¨2£©ÈôÓÃ$\frac{y_i}{x_i}$£¨i=1£¬2£¬3£¬4£¬5£©±íʾͳ¼ÆÊý¾Ýʱ±»¹Ø×¢ÊýÁ¿µÄ¡°¼´Ê±¾ùÖµ¡±£¨ËÄÉáÎåÈëµ½ÕûÊý£©£¬´Ó¡°¼´Ê±¾ùÖµ¡±ÖÐÈÎÑ¡2×飬ÇóÕâ2×éÊý¾ÝÖ®ºÍСÓÚ8µÄ¸ÅÂÊ£®£¨²Î¿¼¹«Ê½£º$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$£¬$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$£©£®
| °àÖ÷Èι¤×÷ÄêÏÞx£¨µ¥Î»£ºÄ꣩ | 4 | 6 | 8 | 10 | 12 |
| ±»¹Ø×¢ÊýÁ¿y£¨µ¥Î»£º°ÙÈË£© | 10 | 20 | 40 | 60 | 50 |
£¨2£©ÈôÓÃ$\frac{y_i}{x_i}$£¨i=1£¬2£¬3£¬4£¬5£©±íʾͳ¼ÆÊý¾Ýʱ±»¹Ø×¢ÊýÁ¿µÄ¡°¼´Ê±¾ùÖµ¡±£¨ËÄÉáÎåÈëµ½ÕûÊý£©£¬´Ó¡°¼´Ê±¾ùÖµ¡±ÖÐÈÎÑ¡2×飬ÇóÕâ2×éÊý¾ÝÖ®ºÍСÓÚ8µÄ¸ÅÂÊ£®£¨²Î¿¼¹«Ê½£º$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$£¬$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$£©£®