题目内容
6.| A. | 相交 | B. | 平行 | C. | 垂直 | D. | 不能确定 |
分析 作ME⊥AB于E,连接NE推导出NE∥平面BB1C1C,ME∥平面BB1C1C,从而面MNE∥平面BB1C1C,进而MN∥平面BB1C1C.
解答 解:作ME⊥AB于E,连接NE,![]()
∵ME⊥AB,BB1⊥AB(同一平面内),∴ME∥AB,
∴$\frac{BE}{AB}$=$\frac{ME}{A{A}_{1}}$=$\frac{MB}{{A}_{1}B}$,
∴$\frac{AE}{AB}$=$\frac{AN}{AC}$,∴NE∥BC,
∵BC?平面BB1C1C,NE?平面BB1C1C,
∴NE∥平面BB1C1C,同理ME∥平面BB1C1C,
又∵ME∩NE=E,∴面MNE∥平面BB1C1C,
∵MN?平面MNE,∴MN∥平面BB1C1C.
∴MN与平面BB1C1C的位置关系为平行.
故选:B.
点评 本题考查线面位置关系的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、数形结合思想,是中档题.
练习册系列答案
相关题目
11.直线l;y=k(x+2)与圆O:x2+y2=4相交于A、B两点,则“k=1”是“S△OAB=2”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
18.设命题p:方程x2+m2y2=1表示焦点在y轴上的椭圆,命题q:在平面直角坐标系xOy中,圆x2+y2=4上至少有三个点到直线3x-4y+m-5=0的距离为1,若p且q为假,求实数m的取值范围.
5.已知实数x,y满足3x2+2y2=6x,则x2+y2的最大值是( )
| A. | $\frac{9}{2}$ | B. | 4 | C. | 5 | D. | 2 |